Intellicus Enterprise Reporting and BI Platform

O“
. . @
intellicus €
Enterprise Reporting and
Business Insights Platform

©Intellicus Technologies
info@intellicus.com
www.intellicus.com

Scripting In Intellicus i

Copyright © 2011 Intellicus Technologies

This document and its content is copyrighted material of Intellicus Technologies.
The content may not be copied or derived from, through any means, in parts or
in whole, without a prior written permission from Intellicus Technologies. All
other product names are believed to be registered trademarks of the respective
companies.

Dated: - September 2011.

Acknowledgements

Intellicus acknowledges using of third-party libraries to extend support to the
functionalities that they provide.

For details, visit: http://www.intellicus.com/acknowledgements.htm .

Scripting In Intellicus ii

http://www.intellicus.com/acknowledgements.htm

Contents

Yo] 03 | S PP 6
Objects accessible from SQL SCript coiiuiiiiii i i e i it eas 6
Scripts in Parameter definitioncoociiiiiii 14
Input Parameter FOrm Level ..o i e i 14
Parameter eVl oot e 14
(0] oTo] g WY of g1 o] [I PP 16
REPOIT [EVEl BVENES . it i e it e e e e 16
SeCtion leVel BVENES . iii ittt e s 16
Accessing external JAVA libraries from SCript ...c.viiiiiiiiiii e 17
e =T =T LU= o = 18
TO acCess @ Class N SCII P . .ttt i i it e ettt eeas 18
Importing class in @ SCriPt .. i i 18
Using importClass(Classname) .oovuviiiiiiiiiii i i i 19

Script Editor....coccivriiinrssssssnssssnssssssssssssssnsssssssssnnsnnnnsnnnnnnnns 22

Context-Sensitive Help . ..o 23
ACCESSING FIeldS. e e 23
Accessing Layout ObjeCts ... 24
(0o .0 01 g Vo =T ol o 0 PP 24
T Vo = o o I =T o] =Tl PP 25
EXaMPles tirciiiiiiiiiiinasnnssnsssnsassnsssnnsssnssssnssssnsssnnnsnnnnsnnnnnnns 26
Conditional FOrmattingocouveiiii i 26
Conditional Suppressing Of ROWSuiiiiiiiiiiiiiiiiiiini st e e e e e 27
Conditional Calculation ..o 28

Scripting In Intellicus iii

Scripting

Scripting

Scripting in Intellicus enables you to control behaviour of various report controls
at run time. For example, you can use script to decide at runtime:

A field should be displayed on report or not

A report section should be rendered or not

A parameter on Input Parameter Form should be displayed or not
Validate the parameter value entered by the user

Change the report SQL dynamically (for example, append filter clause, or
specify table name at run time)

Broadly scripting can be classified in three categories:

Scripts for SQL: This allows dynamic query generation through support of
executable script blocks within the query.

Scripts for Parameter: This allows validation of parameter values by writing
script that can assert true or false for every parameter value on events like
on submission of Input Parameter Form. It also allows changing UI elements
of Input Parameter Form dynamically.

Scripts for Report: This allows changing report layout dynamically at
various events (like onReportStart(), onDataFetch() etc.) to control/change
the way report should render.

You can use the following objects and their properties to control the behavior of
the report at runtime. These report objects are accessible in a specific hierarchy
as explained below:

R t .
epor | rm.sec‘lionst'rame of section”) |

Sections

Fields

Data

i i

Figure 1: Report Execution Script

The objects or events in the code editor are dependent on each other, for one
object there is a specified set of events and vice-versa.

Scripting In Intellicus 5

Scripting

Scripts in SQL

Intellicus supports writing an executable script block in queries. You can insert
the script code anywhere in the SQL. It should be within start and end tags
(<@% and %@>). This executable block returns a string, which replaces the
script block in the SQL query.

The block is enclosed in tags:

e Script block start tag: <@%
e Script block end tag: %@>
A script block may have a valid java script code, including all java script

programming constructs E.g. logical conditions (if...else clause) on which the
block can take decisions.

You can access various objects from within the script block based on run time
context.

Objects accessible from SQL script
Parameters

To refer any parameter within this executable block user has to use the object
model i.e. he/she has to write

I params (“parameterName”) .getXXX ()

Where, parameterName is the name of the parameter and getXXX are various
getter methods for different attributes of the input parameter:

e getValue(): Returns value of the parameter. For example,
params(“prmCity”).getValue(). Return type is string.

e getDataType(): Returns data type of the parameter. It can be: NUMBER
(for numeric parameters), CHAR (for character parameters), DATE (for date
type parameters) and BOOL (for Boolean parameters). It will return NULL if
parameter datatype is unknown.

If you do not append any attribute (for example, params(“prmEmpl”), it is
assumed as parameter itself. You can compare this to null to check existence of
the parameter.

Note: Only getValue() is supported for SYSTEM type parameters or the
parameters whose definition is not available.

Scripting In Intellicus 6

Scripting

Examples

Example 1. Check if the parameter prmEmpNo exists and its value is blank. If
so, append a condition to where clause in the SQL.

Select * from emp where 1=1

<@%
if (params ("prmEmpNo") != null &&
params ("prmEmpNo") .getValue () != "")
{

return " AND empno in (<%$prmEmpNo%$>)";
}
else
{

return ""
}
$@>

Example 2. Check if prmSelectTable exists. If it does, return value of the
parameter as table name. If it does not, return table name as emp.

Select * from

<@%

if (params ("prmSelectTable") == null)

{

return " emp " ;

else

return params ("prmSelectTable") .getValue() ;
}

s@>

Example 3. Check if parameter p_EmpNo exists. If it does not exist, call
procedure with any arguments. If it exists, then it call the procedure that takes
one argument and it passes this parameter as the argument of procedure.

<@%
if (params ("p_ EmpNo") != null)
{
return "EMP DETAILSWITHARG <%p EmpNo%>"
}
return "EMP DETAILS";
Q>

Scripting In Intellicus

Scripting

Report Layout

To refer report layout from SQL script block, you have to use the object model
as:

Irpt.layout.getXXX()

You can add script block to an SQL inside a standard report or to an SQL inside a
Query Object. In both cases, when SQL is verified in SQL Editor for compile
errors and result set, the report layout object may not be available to the script.
When the report is executed - Preview, Run, or Run Ad hoc report using Query
Object, then report layout object is available to the script.

So, you essentially check whether your SQL is running for result set or for report
run, before accessing report layout object.

var arl = rpt.layout.getArl ()
if (arl != null)

{ var fields = arl.getFields()
}

OR

var irl = rpt.layout.getirl () ;
if (irl != null)

{ var fields = irl.getFields();
}

Below is a long example of accessing various parts of report layout to
dynamically construct an optimized SQL for an Ad hoc report.

Example 4. Check if SQL is running for an Ad hoc report. If yes check the
fields used in various constructs of Ad hoc report layout - Select, Filters,
Sort, Group, Chart, and cross tab. Create select clause of SQL with only the
fields used in any of the ad hoc report construct.

SELECT

<@%

// check if report run

var arl = rpt.layout.getArl () ;
if (arl != null)

{

var fields = arl.getFields () ;
var myArray = new Array();

var str = "";

var i = 0;

Scripting In Intellicus 8

Scripting

for (i = 0; i < fields.getCount(); i++)

{
var field = fields.get (i)

if ("TRUE" == field.getDisplayEnabled())

{
myArray[field.getName ()] = field.getName () ;

}

// check Group section

var grpCount = rpt.layout.getGroupsCount () ;

for (var grpIndex = 0; grpIndex < grpCount ; grpIndext+t)
{

var grp = rpt.layout.getGroup (grplIndex) ;
myArray|[grp.getFieldName ()] = grp.getFieldName () ;

}
// check Filter section

var fltrCount = rpt.layout.getFiltersCount () ;

for (var fltrIndex = 0; fltrIndex < fltrCount ; fltrIndex++)

{
var fltr= rpt.layout.getFilter (fltrIndex);
myArray[fltr.getFieldName ()] = fltr.getFieldName () ;

}
// check sort section

var sortCount = rpt.layout.getSortParamsCount () ;

for (var sortIndex = 0; sortIndex < sortCount ; sortIndex++)

{
var sortParam = rpt.layout.getSortParam(sortIndex) ;

myArray[sortParam.getFieldName ()] = sortParam.getFieldName () ;

}
// check Highlighting section

var adhcConditions = arl.getAConditions{();

if (adhcConditions != null)
{

Scripting In Intellicus 9

Scripting

var adhcConCount= adhcConditions.getCount () ;

for (var adhcConIndex= 0; adhcConIndex< adhcConCount;
adhcConIndex++)

{

var adhcCondition = adhcConditions.get (adhcConIndex) ;
var clause = adhcCondition.getAClause (0) ;

myArray[clause.getFieldName ()] = clause.getFieldName () ;
}

}

// check chart section

var chart = arl.getChart();

if (chart != null)

var XCount = chart.getChartXAxisCount () ;

for (var index = 0; index < XCount ; index++)

{

var XAxis = chart.getChartXAxis (index) ;
myArray[XAxis.getFieldName ()] = XAxis.getFieldName () ;
}

var seriesEnum = chart.getSeriesEnum ()

var seriesCount = seriesEnum.size();

for (var index = 0; index < seriesCount ; index++)

{

var series = seriesEnum.get (index) ;
myArray[series.getFieldName ()] = series.getFieldName () ;

// check Matrix section

var matrix = arl.getMatrix ()

if(matrix !'= null)

{

var summaries = matrix.getMatrixSummaries|() ;

Scripting In Intellicus 10

Scripting

var summarySize = summaries.size();

for (var index = 0; index < summarySize ; index ++)

{

var summary = summaries.get (index);
myArray[summary.getFieldName ()] = summary.getFieldName () ;
}

var xAxes = matrix.getMatrixXAxes/() ;

var xAxesSize = xAxes.size ()

for (var index = 0; index < xAxesSize ; index ++)

{

var xAxis = xAxes.get (index) ;
myArray[xAxis.getFieldName ()] = xAxis.getFieldName () ;
}

var yAxes = matrix.getMatrixYAxes();

var yAxesSize = yAxes.size();

for (var index = 0; index < yAxesSize ; index ++)

{

var yAxis = yAxes.get (index) ;
myArray[yAxis.getFieldName ()] = yAxis.getFieldName () ;

var FormulaField= new Array ("Ccylamountl", "Ccylamount2") ;
for (var cnt= 0; cnt< FormulaField.length; cnt++)

{

myArray[FormulaField[cnt]] = FormulaField[cnt];

}

Scripting In Intellicus 11

Scripting

for (var key in myArray)

{

str += myArraylkey]l+",";

}

return str.substring (0, str.length - 1);

}

else

{

return " * ";
}

Q>

FROM Call Log

Insert script block in SQL.

' SQL Editor - Windows Internet Explorer

@;\ Default Connection Schema refreshed on: 12/2110 3:20 PM @
@ Table Design Result Sort Filters Procedure
O Procedure O Synonym SELECT ~
- <@%
Show|1-20 0T 30 ! var arl = rptlayout.getar ()
Entities if (arl !=nully
[PARAMETERS] 1| varfields = arl.getFields(y;
BRAMCH var myArray = new Array();
CALL_LOG var str=
COUNTRY vari=0
CUSTOMER for (i =0;i = fields.getCount(); i++)
CUSTSITE {

var field = fields.get(i);
if (TRUE" == field.getDisplayEnabled(})

 myArrayifield.getName()] = field gethame();

LEDGER1 v

Attributes
var grpCount = rptlayout.getGroupsCount();
for (var grpindex = 0; grpindex < grpCount ; grpindex++)

var grp = rptlayout. getGroupigrpindex)
myArraylgrp.getFisldMame()] = arp.getFisldMame()

var fltrCount = rpt.layout.getFilters Count()
for (var fltrindex = 0; fitrindex = fitrCount ; fitrindex++)

var fltr= rpt.layout. getFilter(fitrindex);
mvArravifitr netFisldMame = fitr aetFisldhamer b

@ Tis SOL statement is final SOL. Manual changes done in 1his tab will be applisd here; butwill not propagate 1o

Figure 2: Script Editor with the query

Scripting In Intellicus 12

Scripting

Name |QueryObject

saL
Load in Mew Window
SELECT
=(@%
var arl = rpt.layout.getArl();
it (arl !=null}
- var fields = arl.getFields
var myArray = new Array();
yar sir =
Fields
123 Call Orgin No ~

123 Call Terminating No

Ag Start Time Of Call

An End Time Of Call

Ae Call Org City Latitude
Aa Call Org City Longitude
An Call Criginating City

An Call Terminating Latitude
Aa Call Ternimating Lengitude
An Call Terminating City

123 Prod Mo

Aw Prod Type

Aa Prod Line

Aa Product

123 Prod Cost

123 Prod Price

An Status

An Picture

123 Sales 52

12 Sales 93

123 Sales 54

12 Salesz 8

ul

< 1> %

o
M+

L = [+ %

Datasource Type

Field CALL_ORGIMN_MNC
Caption Call Crgin Mo
Data Type |MUMBER »
Format
Width |30 Cutput Format

Align | Right » Input Format

Time Zone
Database Time Zone

Lookup Values

Lookup Key Field

User Defined soL [0

Figure 3: Script Editor with the query

HyperLink !

Group Label |{Select to add group

User Time Zone

M FieldFon
|

Scripting In Intellicus

13

Scripting

Scripts in Parameter definition

Intellicus provides scripting support for parameter value validation for all
parameter types (combo, textbox, radio, checkbox, etc). Script will return true
(parameter value is valid) or false (parameter value is invalid). If validation
fails, it can also set an error message.

Scripting is available at

e Form level (can be defined on Parameter Form layout dialog on Studio)

e Parameter level (defined on Parameter detail dialog box)

Input Parameter Form Level

When a report has user parameters, Input Parameter Form is presented to the
user to enter run time parameter values. Use Form level scripting to validate
parameter values entered on IPF.

You can open Script Editor dialog from Parameter Form Layout dialog to
write the script.

At IPF level (Form level), OnSubmit() event is supported. It means script is
executed when user clicks OK / Run button on IPF. A user can write any valid
java script code within this function. This function MUST return a boolean value.

If all the parameter values are valid, it should return true, if one or more
parameter values are invalid, it should return false. If script returns false then
an error message will be displayed to the user and he/she would not be allowed
to submit the IPF and execute the report. You can also set the error message
that should be displayed to the user.

Script can access any parameter of the report. This includes parameter objects
(even if not imported) and global business parameters. This will be Read-only
access (parameter objects and global business parameters).

Note: In case of JavaScript error, Report Server will respond with
ERROR.

Parameter Level

You can add a validation script for a parameter being designed on Parameter
Detail dialog. You can open Script Editor dialog from here to write the
parameter validation script.

At parameter level, OnChange() event is supported. It means, validation script
will be executed when:

1. User types in a value for the parameter (for input type TEXT), or

Scripting In Intellicus 14

Scripting

2. Selects/Unselects value from the parameter combo/list/tree.
3. Checks/ Un-checks a check box.

Validation script written at parameter level can access other report parameters.
It can also access parameter objects (even if not imported) and global business
parameters. This will be Read-only access.

If the parameter value is valid, script should return true. If it is invalid, script
should return false. You can also set an error message that should be displayed
when parameter validation fails. Report will not be generated if parameter
validation fails.

Using Parameter Level script, you can also modify attributes of parameters and
control/change the way IPF is shown. For example, if paramA is invalid, disable
paramB. IPF will reload parameters that are affected by the script.

Using script, you can also change parameter Ul control attribute:

e ENABLE: READ / MODIFY at Parameter level and READ ONLY at Input
Parameter Form level.

Note: If such a report is scheduled, then IPF is presented at the time of
setting the schedule and so, script will be executed only at the time of
scheduling (and not at every time when schedule executes).

In case of scheduled report execution, IPF is not displayed. Hence, script
will be executed at the time of saving of schedule tasks. Script will not
be executed at report run time.

Scripting In Intellicus 15

Scripting

Report Scripting

Intellicus Studio provides facility to customize the events using the Script Editor.
Coding is done in JavaScript syntax, and is event based. The following table lists
the events that are supported/provided at report level.

Report level events

% Important: You need to make sure that the code pertaining to a
= particular event is written within the appropriate event only.

Event Description

OnReportStart This event is fired before report objects such as fields

and sections are constructed. (Before the report starts
to execute itself)

OnReportEnd This event fires after execution of the report.

OnPageStart This event is fired before displaying every page. This
event does not ensure that the previous page’s display
has been completed.

OnPageEnd This event is fired after the display of every rendering.

Link)

OnHyperlink (Button,

This event is fired when the end user clicks on the
hyperlink on the report output. The mouse button and
the URL are passed in as parameters.

OnDatalnitialize

This event is fired after the report is loaded, or SQL
statement is fired or SQL fields are created. In this
event, new report fields can be added and existing
fields removed.

OnFetchData (eof)

This event is fired after each row of the report SQL
statement is fetched from the database. In this event,
the report field’s data can be accessed for calculation
and manipulation.

OnNoData

This event is fired when zero rows are fetched from
the report SQL statement.

OnPrintProgress

This event is fired when the printing progresses to

Scode,

CancelDisplay)

(Number, Description,
Source,
HelpFile, HelpContext,

(PageNumber) next page. The printing process refers to sending the
page data to the printer driver and not printing the
page on the paper.

OnError This event is fired when any error occurs while

running the report. In this event, the error messages
can be changed or can be suppressed.

Section level events

Intellicus passes three events at section level for all sections. The sequence of
events depends on the summary objects and their section dependencies. The

event sequence is:

Scripting In Intellicus

16

Scripting

OnFormat

This event is fired after the data is loaded and bound to the fields, but before
the section is laid out for printing. You can use this event to modify the layout of
the section or any of the controls on it.

& Note: This is the only event in which you can modify the height of the
section.
OnBeforePrint

It is fired before the section is rendered to the ‘Canvas’ object. You can use this
event to modify the values of the controls before they are printed. Any changes
that are made here will not affect the height of the section.

ﬁ Important: It is recommended, NOT to access any report fields in this
bt event. If you need the value of a field in this event, you should use a
hidden control to store the value temporarily in the format event.

OnAfterPrint

It is fired after the section is rendered to the ‘Canvas’ object. You can use this
event to update any counters that you need to use after the report is completed.

Accessing external JAVA libraries from script
You can use external (custom) Java library classes and objects in scripts.

For example, there is a database that holds XML as data. User can create a
formula field, which will parse this XML and return data values from it. To
achieve this, user will access third-party xml parser classes.

Few applications where user may need to use custom Java objects can be:

e Script can use some external java libraries for XML Parsing.

e Script can pass some parameters to an external custom Java class which
connects to a web service using the given parameters and returns the
resultant data, e.g. a web service which returns the live price of a stock or
current weather condition of a city.

e Script can use JDBC APIs to connect to a database and do tasks listed in
above point.

e Script can use java or external APIs to read external file (.txt, .xls etc.) data.

e Script can log required information during report events.

Scripting In Intellicus 17

Scripting

Prerequisite

The third party (custom) class(s) to be accessed from Intellicus script needs to
be included in Intellicus report server class path.

Note: Easiest way to do this is to make a jar containing custom class(s)
and place it in the Report Engine’s lib folder

<Install path>\Intellicus\ReportEngine\lib.

To access a class in script

You can access a custom class in a script by using a keyword Packages (case
sensitive) that will be followed by the class name or the entire package pattern
(if the class is in a specific package) including class name.

For Example,

Ivar classObj = new Packages.MyClass () ;

OR

Ivar classObj = new Packages.mypackage.MyClass () ;
Instance of the class once generated, can be used to invoke any of the method
(that contains logic, for e.g. XML parsing code) of the custom class from the
script.

Ivar resultValue = classObj.parseXMLData (xmlData) ;

For the package pattern starting with “java”, “com” or “org”, Packages keyword
can be omitted.

Ivar fileObj = new java.io.File(filepath);

var domObj = new org.apache.xerces.parsers.DOMParser () ;

Importing class in a script

You can import all required packages or classes once in the beginning and then
user can use the class directly with the class name anywhere in the script. To
achieve this, you can use any of the following techniques.

Using importPackage(packagename)

Use importPackage() to import all classes within a package.

@param packagename: Entire package path whose classes
needs to be imported in a script.

You can import multiple packages by specifying all package paths separated by
comma as argument of importPackage function.

Scripting In Intellicus 18

Scripting

Import statement should be written before first usage.

If the package starts with java, org or com, You can omit Packages key word if
the package starts with java, org or com.

Examples:
Importing Single Package

importPackage (Packages.java.io) ;

var fileObj] = new File (“d:\temp.txt”) ;
if(fileObj.exists())

{

//do something}

else

{
// do something else}

Importing Multiple Packages

importPackage (Packages.java.io, Packages.java.lang); var fileObj
= new File(“d:\temp.txt”);

Using importClass(classname)

If a user needs to import specific class/classes within a package, importClass()
can be used.

@param classname: Path of the class (including entire package path) which
needs to be imported in a script.

Multiple classes can also be imported by specifying all class path names
separated by comma as an importClass function argument.

Examples,

Importing Single Class

importClass (Packages.java.io.File);
var fileObj = new File (“d:\temp.txt”) ;
if(fileObj.exists ())

{Java.lang.System.out.println (“File exists...!”);}
elge
{Java.lang.System.out.println (“File doesn’t exist...!”);}

Scripting In Intellicus 19

Scripting

Importing Multiple Classes

importClass (Packages.java.io.File, Packages.java.lang.System) ;
var fileObj] = new File (“d:\temp.txt”) ;
if(fileObj.exists())

{System.out.println (“File exists...!”);}
else
{System.out.println (“File doesn’t exist...!”);}

Using Javalmporter(path)

If a user needs to import entire package or a specific class, Javalmporter() can
be used.

@param path: Path of the package/class (including entire package path) which
needs to be imported in a script.

Multiple packages/classes can also be imported by specifying full path names for
all packages/classes separated by comma as Javalmporter function argument.

Example,

Importing Packages

var importer = Javalmporter (Packages.java.io,Packages.java.lang):;

var fileObj;

with (importer) { fileObj = new File (“d:\temp.txt”);}
if(fileObj.exists ())

{System.out.println(“File exists...!”);}

else

{System.out.println (“"File doesn’t exist...!”);}

Importing Classes

var importer =
Javalmporter (Packages.java.io.File, Packages.java.lang.System) ;
var fileObj;with (importer) { fileObj = new File (“d:\temp.txt”);}
if(fileObj.exists())

{System.out.println (“File exists...!”);}

else{System.out.println(“"File doesn’t exist...!”);}

Scripting In Intellicus 20

Scripting

Importing Packages & Classes together

var importer =

Javalmporter (Packages.java.io.File, Packages.java.lang) ;

with (importer) {var fileObj = new File (“d:\temp.txt”);
if(fileObj.exists())

{System.out.println (“File exists...!”);}

else

{System.out.println (“"File doesn’t exist...!”);}

}

Scripting In Intellicus 21

Script Editor

Script Editor

Intellicus provides facility to write scripts for field properties and field events
using the Script Editor. This enables you to define your own constructs for report
generation. To get the Script Editor dialog box, click the option Scripting from
Tools menu.

Script Editor - JScript
Edit

P4 By B | o o | g

iTa
U]}
+
L]}

GroupHeaderl w | | OnFormat w

function OnFormat])

1
A Change Back Style of Price field to Mormal for applying back color,
rpt.Sections("Detail"y. Controls{"txtPRICE") backStyle =1;

¢ Back color of Price field is red when Price is greater than 400
A Other wise Back color is green.
if{rpt. Sections{"Detail"y. Controls{"txtPRICE").datavalue = 4007

1
rpt.Sections{"Detail"). Controls{"txtPRICE").backColor = OxFFOOFF;
iy
else
1
rpt.Sections{"Detail"). Controls{"txtPRICE").backColor =0xFFFFOO;
¥

Ok] [Cancel

Figure 4: Script Editor

Scripting In Intellicus 22

Script Editor

Context-Sensitive Help

The Script Editor also provides context-sensitive help that assists in correct code
(syntax) formation. As you type the code in the Script Editor, the context-
sensitive help keeps popping up selection list of various fields and objects that
may fit into the syntax.

& Script Editor - JScript

Edit
& B o # iEE
afPROD TYPE M| OnAfterPrint

function OnAfterPrint)

2 Sections

Figure 5: Context-Sensitive Help

Accessing Fields

You can access the report fields in ‘rpt.Fields’ collections. You can use this
collection to write code in the Script Editor to access fields (controls) in the
layout pane. Each event in the Script Editor has a specific purpose; you should
not write a code that does not pertain to the object / event under which it has
been written.

To add a new code under the Data Initialize event of the Intellicus Report
Layout, the syntax is:

I rpt.fields.add “<MyField>";

f Warning: Make sure that the added field does not already exist; else, a
fatal error will occur.

Code script for the value property of the fields can be given under ‘OnFetchData’
event of Intellicus Report Layout.

I rpt.fields ("SomeFieldName") .value="<SomeValue>";

Scripting In Intellicus 23

Script Editor

Accessing Layout Objects

The layout objects are the controls that are added to the report layout region.
[See also: Working with Layout Editor, Chapter 3], you can access these objects
through control’s collection members of the sections collection.

Irpt.sections ("Detail") .Controls ("imgLogo") .visible = false;

ﬁ Important: You will not be able to access the database using code
< (scripts).

Compiling scripts

After typing in the script, you can compile the script to make sure it will run
without error and you will be able to achieve the results that you want, using the

script. To compile the script, click the Compile button available on bottom-left
side of the dialog box.

Script Editor - JScript
Edit

b BRB oo | &KEE

afPROD TYPE ¥ || OnAfterPrint

function OnafterPrint()

rpt.Control.
b

<

[¥
Syntax Error: 'sections' / 'fields' / 'data’ expected after rpt (Script; line 3; 3
Line:5 Cal:13

Figure 6: Syntax Error in the script

If the script has any syntax error, it is listed in a pane opening between script
pane and buttons. You can remove the errors and click the Compile button to
make sure the script is error-free.

Scripting In Intellicus 24

Script Editor

Find and Replace

Script Editor dialog box offers Find and replace functionality. Click the Find
button on the toolbar of Script Editor or press Ctrl + F on the keyboard to switch
on the functionality.

You have options to search up and search down. Selecting Match Case will
conduct a case sensitive search. Selecting Match whole word only will not find
the words where the search string is part of a word. A click on Find Next
button will start search.

#, Script Editor - JScript

PageHeader * | OnFormat i
Find what Controls [IMatch case
.) DMatch whaole | ©Up
[]Find and Replace word only (%) Down
function OnFarmati) &
1
if { { rpt.Section("ReportHeader") . [oalgidgell "t tBox") text 1= "_99999" % 28

{ rpt.Fields{"dbvalue").value !'= rpt.Sections{"PageHeader").Controls{"txtBax"). text 3)

1
rpt.Sections{"Detail"}).Controls{"Shapel").visible = true ;

¥

else

1
rpt.Sections{"Detail").Controls{"Shape1").visible = false ;

¥
rpt.Sections{"PageHeader"). Caontrols{"txtBox"). text = rpt.Fields{"dbField"}.value;

£ >

Line:3 Col:36

(o]][Cancel

Figure 7: Find and Replace feature on Script Editor

If you want to carry out find and replace, select Find and Replace check box.
Clicking Replace will replace the next occurrence of the search sting. Clicking
Replace All will search for all the occurrences of the search string.

Scripting In Intellicus 25

Examples

Examples

Conditional Formatting
You can achieve conditional formatting through Scripting too.

You can format a displayed row value if the values of that row satisfy a given
condition. For example, if you need to compare the database field (say ‘dbfield”)
with a field in the previous row, and encircle it in red if it is different, add a text
box (say ‘text box’) in the report header and set its visible property (from the
Properties list) as ‘False’.

Set its text property (from the Properties list) to any arbitrary value (say '-999')
that can never be attained by the field to be compared with.

Now, add a shape (say "shapel") around the ‘dbfield’ and set its color and shape
to a red ellipse. The same can be achieved using the Script Editor as follows:

1. From the Tools menu, click Scripting.

2. Select object as Detail.

3. Select event as OnFormat.

4. Type the following JavaScript:
Object: Detail Event: OnFormat
Code:

function OnFormat ()

{

if ((rpt.Section("ReportHeader") .Controls ("txtBox") .text
I'= " 99999") &&
(rpt.Fields ("dbValue") .value !=
rpt.Sections ("PageHeader") .Controls ("txtBox") .text))
{
rpt.Sections ("Detail") .Controls ("Shapel") .visible = true ;
}
else

{
rpt.Sections ("Detail") .Controls ("Shapel") .visible

false ;

rpt.Sections ("PageHeader") .Controls ("txtBox") .text =
rpt.Fields ("dbField") .value;
}

Scripting In Intellicus 26

Examples

Conditional Suppressing Of Rows

You can suppress the display of certain rows as per your requirement, like some
column containing NULL values can be suppressed (hidden) from getting
displayed on the report.

There are two methods to do this:

e Select the control and set the visible property (Property window) value as false,
and assign a 0 (Zero) value to the height property (Property window) of the

control.
e Go to Tools > Scripting; select the object as Detail, and the event as
OnFormat, and write the following code:

Object: Detail Event: OnFormat

Code:
function OnFormat ()

{

if (rpt.Fields ("Name") .value == null)
{
rpt.Sections ("Details") .visible = false;
}
else
{
rpt.Sections ("Details") .visible = true;
}
if (rpt.Fields ("Name") .value == null)

{
rpt.Sections ("Details") .height = 0;

}

else

{
rpt.sections ("Details") .height = 285;

Important: To dynamically change the height of a section through a
program, the ‘CanGrow’ property (Properties list) of Detail Section should
be set to ‘False’.

If it is set to 'True’, then the report section will override your (height)
value to adjust the height of the section.

b2

Scripting In Intellicus 27

Examples

Conditional Calculation

You can calculate values in the report by giving conditions for calculation. For
example, there are two fields in a report Account_type and Amount. There can
be two account types say ‘A’ and ‘B’. If you want to sum ‘A’ and ‘B’ separately,
write a JavaScript in the Script Editor as:

Object: Report Event: OnDatalInitialize,

Cocle:
function OnDatalInitialize ()
{
rpt.Fields.add ("valueA") ;
rpt.Fields.add ("valueB") ;

rpt.Fields. ("valueA") .value = 0;
rpt.Fields. ("valueB") .value = 0;
}
function OnFetchData (eof)
{
if (rpt.Fields ("accType") .value == "A")
{
rpt.Fields. ("valueA") .value =
parseFloat (rpt.Fields. ("valueA") .value)) +
rpt.Fields ("Amnt") .value; }
else
{
rpt.Fields. ("valueB") .value =
parseFloat (rpt.Fields. ("valueB") .value)) +

rpt.Fields ("Amt") .value;
}

rpt.Sections ("gfDEPT") .Controls ("txtACC A") .dataValue

rpt.Fields. ("valueA") .value;
rpt.Sections ("gfDEPT") .Controls ("txtACC B") .dataValue =
rpt.Fields. ("valueB") .value;

}

This script will add two new fields in the report containing summated values for
‘A’ and ‘B’ account types.

Scripting In Intellicus 28

	Scripting in Intellicus
	Acknowledgements
	Contents

	Scripting
	Scripts in SQL
	Objects accessible from SQL script
	Parameters

	Examples
	Report Layout

	Scripts in Parameter definition
	Input Parameter Form Level
	Parameter Level

	Report Scripting
	Report level events
	Section level events
	OnFormat
	OnBeforePrint
	OnAfterPrint

	Accessing external JAVA libraries from script
	Prerequisite
	To access a class in script
	Importing class in a script
	Using importPackage(packagename)

	Using importClass(classname)
	Importing Single Class
	Importing Multiple Classes
	Using JavaImporter(path)
	Importing Packages
	Importing Classes
	Importing Packages & Classes together

	Script Editor
	Context-Sensitive Help
	Accessing Fields
	Accessing Layout Objects
	Compiling scripts
	Find and Replace

	Examples
	Conditional Formatting
	Conditional Suppressing Of Rows
	Conditional Calculation

