

 Intellicus Single Sign-on

Intellicus Enterprise Reporting and BI Platform

©Intellicus Technologies
info@intellicus.com
www.intellicus.com

Intellicus Single Sign-on i

Copyright © 2010 Intellicus Technologies

This document and its content is copyrighted material of Intellicus Technologies.

The content may not be copied or derived from, through any means, in parts or

in whole, without a prior written permission from Intellicus Technologies. All

other product names are believed to be registered trademarks of the respective

companies.

Dated: - September 2010.

AAcckknnoowwlleeddggeemmeennttss

Intellicus acknowledges using of third-party libraries to extend support to the

functionalities that they provide.

For details, visit: http://www.intellicus.com/acknowledgements.htm .

http://www.intellicus.com/acknowledgements.htm

Intellicus Single Sign-on ii

Contents

Introduction ... 1
Single Sign-On Requests ... 1

Single Sign-On Flow: .. 2

SSO for Host Application on Java Platform 3

Configurations Required .. 3

Configuring Host Application .. 3

Configuring Intellicus .. 3

Implementation for Single Sign-On Request ... 4

Setter method for each UserInfo attributes ... 7

Optional Settings ... 11

Implementation for Logout .. 13

Sample Code for Single Sign-On request: .. 15

SSO for Host Application on .Net Platform 19

Configurations Required .. 19

Configuring Host Application .. 19

Configuring Intellicus .. 19

Implementation for Single Sign-On Request ... 20

Getter/Setter property for each UserInfo attributes 24

Optional Settings ... 27

Sample Code for Single Sign-On request: .. 29

SSO for Host Application on PHP Platform 33

Configurations Required .. 33

Configuring Host Application .. 33

Configuring Intellicus .. 33

Implementation for Single Sign-On Request ... 34

Setter method for each UserInfo attributes ... 36

Optional Settings ... 39

Implementation for Logout .. 41

Sample Code for Single Sign-On request: .. 42

SSO for Host Application using COM 47

Configurations Required .. 47

Configuring Host Application .. 47

Implementation for Single Sign-On Request ... 47

Getter/Setter property for each UserInfo attributes 49

Intellicus Single Sign-on iii

Optional Settings ... 51

Sample Code for Single Sign-On request: .. 51

User Management Configuration at Intellicus 55

Sample XML file for Integration (Integration.xml).............. 56
Details of xml: ... 58

Admin Activities Performed through SSO 63
Integration Flow: ... 63

Host Application on Java Platform .. 63

Sample Code: .. 67

Host Application on .Net Platform ... 69

Sample Code: .. 72

Host Application on PHP Platform ... 75

Sample Code: .. 77

Introduction

Intellicus Single Sign-on 1

Introduction

Single sign-on refers to one time authentication performed by the host

application. Users accessing Intellicus from within a host application are already

authenticated. Intellicus does not perform authentication check for such users.

This means that User can access Intellicus without going through the Intellicus

Login page. Host application would require passing user credentials of currently

logged-in user (in host application) to Intellicus.

In addition to the user credentials, host application can also pass business

parameters that could be used in the reports for data filtering based on the user

context.

Single Sign-On is briefly referred as SSO.

Note: Single Sign-On is required only when Host application and

Intellicus are running as two separate web applications on the same or

different web servers.

Note: Single Sign-On is not required when Intellicus is embedded inside

the Host application.

Single Sign-On Requests

Host application‟s users can access Intellicus reporting features integrated in

their application. Reporting features includes Report listing, Report execution,

User preferences, Adhoc wizard etc.

These features can be accessed either inside an Iframe or in a new window.

So end-users of host application can request all these reporting features and

also pass business/request parameters to Intellicus.

Host application would require following a sequence of steps in order to achieve

SSO.

In order to access reporting features of Intellicus, a user space should exist at

Intellicus for each user of host application. User space at Intelli cus can be

created manually through Intellicus web portal. It can also be created

dynamically using Intellicus APIs.

Note: Please refer Chapter 5 of this document for settings required for

dynamic user creation.

Introduction

Intellicus Single Sign-on 2

Single Sign-On Flow:

Steps:

1. In Web browser, Host Application user requests for reporting.

2. Using Intellicus SSO Libraries, host application requests Token from

Intellicus. With this request Host application sends user credentials and other

business parameters.

3. Intellicus Web server send request to report server for User space

Identification.

4. If user space exists at Intellicus, intellicus token is returned to host

application web server.

5. From client browser, reporting request is sent to Intellicus web server with

intellicus token and the relative url for Intellicus HTTP API.

6. Intellicus receive the token and use it for user identification.

7. Intellicus creates user session and serve the reporting request to Host

application user.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 3

SSO for Host Application on Java Platform

Configurations Required

Configuring Host Application

In order to invoke methods at Intellicus end, the file intellicaSSO.jar needs to be

placed in host application‟s library.

The jar will be provided with intellicus setup.

Path for jar file: <Install_Path>\APIs\SingleSignOn\Java

Note: For Intellicus version earlier than 4.1, this jar can be requested to

Intellicus Support.

 Host application needs to set Intellicus web application url.

Configuring Intellicus

Intellicus application contains Integration.xml file for integration and dynamic

user creation activities.

 In Integration.xml, set business parameters required to pass (If any)

 Set CREATE_USER for Dynamic User creation in Intellicus.

This xml file contains the information regarding integration like user ro le,

dynamic category creation etc.

Path for Integration.xml:

<Intellicus_Install_path>\Jakarta\webapps\intellicus\WEB-INF

Note: Host application needs to give details in xml according to their

requirements.

Corresponding to this integration xml file content, createUser() method in

ReportControllerDetails.JSP at the Intellicus end should be defined.

Sample Integration xml and Controller jsp are provided with the Intellicus

Setup.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 4

Note: For Intellicus version earlier than 4.1,

ReportController.jsp,ReportController.Detail.jsp,LaunchPortal.jsp can be

requested to Intellicus Support and should be placed at

<Intellicus_install_path>\Jakarta\webapps\intellicus.

Implementation for Single Sign-On Request

Implementation code can be written inside any jsp or servlet of host application.

1. Host application needs to add intellicaSSO.jar in their application.

2. Host application needs to import class Enums.java, SingleSignOn.java,

SingleSignOnException.java, UserInfo.java.

import com.intellicus.integration.singlesignon.Enums;

import com.intellicus.integration.singlesignon.SingleSignOn;

import com.intellicus.integration.singlesignon.SingleSignOn

Exception;

import com.intellicus.integration.singlesignon.UserInfo;

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

Constructor

public UserInfo()

Constructor

public UserInfo(String userId, String orgId)

Parameters:

 userId : User Id of the logged in user

 orgId : Organization id of the logged in user

5. Pass this userInfo object to SingleSignOn class using the setUserInfo

(userInfo) method.

public void setUserInfo(UserInfo userInfo)

SSO for Host Application on Java Platform

Intellicus Single Sign-on 5

Parameters:

 UserInfo: Object reference of UserInfo class.

6. Set the IntellicusUrl. Intellicus url can be read from property file.

7. If host application wants to set some hidden parameters, then invoke the

setHiddenParameter (String paramName, String paramValue) for each hidden

parameter.

These parameters can be read from property/xml file.

Method:

This method puts the hidden parameter into the hashmap for hidden parameters.

public void setHiddenParameter(String paramName,String

paramValue)

Parameters:

 paramName: Name of the business parameter.

 paramValue: Value of the business parameter.

Note: This method would be called before calling, the getIntellicusToken

method. User can not change/update the parameters set through this

method. If these parameters need to be changed,then host application

need to request intellicusToken again in order to consider new value for

these parameters.

8. Check for the Intellicus Token availability in session. If its not available in

session then got to step 11 else go to step 12.

9. Call the getIntellicusToken() method of SingleSignOn class to get the token

from Intellicus.

Method:

This method calls Intellicus API and passes the user credentials and other

hidden/business/request parameters to Intellicus.

public String getIntellicusToken() throws SingleSignOnException

Returns:

 TokenString: Received token from Intellicus

10. If host application gets the token from Intellicus, then it redirects the request

to Intellicus redirectionAPI with token.

11. Host Application can set the name of redirectionAPI. Its default value is

“LaunchPortal.jsp”.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 6

Method:

This method sets the name of Intellicus jsp to which request is redirected.

 public void setRedirectionAPI(String redirectionAPI)

Parameters:

 redirectionAPI: Name of the jsp at Intellicus end to which host application

wants to redirect the request after user authentication

12. If host application wants to set some other business parameters, then invoke

the setBusinessParameter (String paramName, String paramValue) for each

such parameter.

These parameters can be read from property, xml file.

Method:

This method puts the business parameter into the hashmap for request

parameters.

public void setBusinessParameter(String paramName,String

paramValue)

Parameters:

 paramName: Name of the request parameter

 paramValue: value of the request parameter.

Note: This method would be called before calling, the redirectToIntellicus

method. Parameters set in this method can be updated without

requesting new token.

13. After setting the name of the redirectionAPI, invoke the method for

redirecting the request to Intellicus.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

public void redirectToIntellicus(String onSuccess,String

intellicusToken,HttpServletResponse response) throws IOException

Parameters:

 onSuccess: Name of the requested Intellicus API.

 intellicusToken: Token received from Intellicus after user authentication.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 7

 response: It is the HttpServletResponse object. It is used for redirecting a

request.

14. If host application does not get the token from intellicus i.e. if user

authentication fails at Intellicus end, then host application can show their

error page or error message based on the status message returned by the

Intellicus.

Setter method for each UserInfo attributes

1. Method to set the User id

public void setUserId (String userId)

Parameters:

 userId: User id.

2. Method to set the User Password

public void setPassword (String password)

Parameters:

 password: password for the user.

3. Method to set the User's Organization id

public void setOrgID (String orgID)

Parameters:

 orgID: organization id for the user.

4. Method to set the User's status(ACTIVE / SUSPENDED)

public void setStatus (String status)

Parameters:

 status: status of the user i.e. user is active or suspended.

5. Method to set the user to Super Admin("true"/"false")

public void setIsSuperAdmin (boolean isSuperAdmin)

Parameters:

SSO for Host Application on Java Platform

Intellicus Single Sign-on 8

 isSuperAdmin: Whether user is Super admin or not.

6. Method to set the user to Admin("true"/"false")

public void setIsAdmin (boolean isAdmin)

Parameters:

 isAdmin: Whether user is admin or not.

7. Method to set role Id's belonging to that user

public void setRoleIds (String roleIds)

Parameters:

 roleIds: Role that should be assigned to this user.

8. Method to set role User's Description

public void setDescription (String description)

Parameters:

 description: Any description or detail about that user.

9. Method to set session id

public void setSessionId (String sessionId)

Parameters:

 sessionId: session id for the user.

10. Method to set Security Descriptor

public void setSecurityDescriptor (String securityDescriptor)

Parameters:

 securityDescriptor: any specific information about the user.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 9

11. Method to set customer Id

public void setCustomerId (String customerId)

Parameters:

 customerId: customer id for the user.

12. Method to set location

public void setLocation (String location)

Parameters:

 location: location for the user.

13. Method to set locale

public void setLocale (String locale)

Parameters:

 locale: locale for the user.

14. Method to set database name

public void setDBName (String dbName)

Parameters:

 dbName: Database name for the user.

15. Method to set TimeStamp

public void setTimeStamp(long longTimeStamp)

Parameters:

 longTimeStamp: timestamp for the user.

16. Method to set System Privileges

public void setSystemPrivileges(String systemPrivileges)

Parameters:

 systemPrivileges: system privileges for a user.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 10

17. Method to set blank password

public void setBlankPassword(boolean blankPassword)

Parameters:

 blankPassword: it is true or false.

Note: Please refer IntellicusSSOEnduserRequest.java for end user

request sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\Java

Note: Please refer IntellicusSSOLogout.java for logout sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\Java

SSO for Host Application on Java Platform

Intellicus Single Sign-on 11

Optional Settings

Controller API

This is the main controller for the integration of Intellicus with a host

application. It reads information from Integration.xml and sets hidden

parameters (like domain ID and workspace ID) at Intellicus end.

Default name of this api is: ReportController.jsp and ReportControllerDetail.jsp.

If required, name of this API can be changed.

To call this API using different name than default names, you need to use

method given below.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

public void setIntellicusControllerAPI (String

intellicusControllerAPI)

Parameters:

 intellicusControllerAPI: Name of the jsp at Intellicus which performs

controlling activities for Intellicus.

This controller API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

Redirection API

It is the API available at Intellicus end to which request is redirected to from

host application to Intellicus.

Its default name is: LaunchPortal.jsp

If required, name of this API can be changed.

To call this API using different name than default names, you need to use

method given below.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

 public void setRedirectionAPI(String redirectionAPI)

SSO for Host Application on Java Platform

Intellicus Single Sign-on 12

Parameters:

 redirectionAPI: Name of the jsp at Intellicus end to which host application

wants to redirect the request after user authentication.

This redirection API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

lbMode

Intellicus web application can be running on multiple web servers, so in such

scenario a load balancer feature is used to decide which web server should serve

the reporting request from Host application.

Host application need to specify whether reporting request is sent to load

balancer or to a particular web server (in case if there is single web server for

Intellicus application).

lbMode: This variable specifies whether to take reporting request to Load

balancer or to particular Intellicus web server.

Its default value is: false.

It means no load balancer is in picture.

Method:

This method sets the lbMode as true or false.

 public void setLbMode(boolean lbMode)

Parameters:

 lbMode: boolean value.

lbRelativePath

This variable specifies the relative path for Load balancer. It is accessed only

when lbMode is true.

Its default value is: /LoadBlancerServlet

Method:

This method sets the lbMode as true or false.

 public void setLbRelativePath(String lbRelativePath)

SSO for Host Application on Java Platform

Intellicus Single Sign-on 13

Parameters:

 lbRelativePath: String for relative path.

intellicusExternalURL

Intellicus application would be accessed by Host web server (Internal IP) to get

the IntellicusToken.

But an end-user can access the host application from some outer network. As

host application need to redirect the request for Intellicus HTTP APIs from

browser, an External IP for Intellicus web application needs to be specified.

intellicusExternalURL: This variable specifies the external URL for Intellicus

web application.

Method:

This method is to set the External URL for Intellicus.

public void setIntellicusExternalURL(String

intellicusExternalURL)

Parameters:

 intellicusExternalURL: String for external URL.

Implementation for Logout

On logout from Host application, session for the user is invalidated and is

redirected to home page of Host application. Now new user can login through

same window.

Because host application and Intellicus web application are running on different

web servers, so if host application user logs out from that application, it does

not destroy the session in Intellicus for that user.

In order to destroy a session in Intellicus corresponding to a Host application

end user, host application need to invoke logout method of Intel licus as well.

So logout needs implementation for both host application as well as Intellicus.

Note: If on logout, host appliaction is closing the current window, then

there is no need of invoking the logout action at Intellicus. A new user

will login through new window, so new session will be created for that

user.

SSO for Host Application on Java Platform

Intellicus Single Sign-on 14

Implementation code can be written inside any jsp or servlet of Host application.

1. Host application need to add intellicaSSO.jar in their application.

2. Host application need to import class Enums.java , SingleSignOn.java,

SingleSignOnException.java ,UserInfo.java.

import com.intellicus.integration.singlesignon.Enums;

import com.intellicus.integration.singlesignon.SingleSignOn;

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Set the IntellicusUrl. Intellicus url can be read from property file.

5. Call the method logoutFromIntellicus of SingleSignOn.

Method:

This method calls Intellicus API and passes the user credentials to Intellicus.

public void logoutFromIntellicus (HttpServletResponse response)

Parameters:

 response: It is the HttpServletResponse object. It is used for redirecting a

request.

Sample logout code for Host application:

SingleSignOnLogout.jsp: It contains the steps mentioned above.

index.jsp: Home page of Host application.

frm1: Iframe on Host application screen in which Intellicus reporting feature are

called.

function fnLogOut()

{

 var logout=confirm('Do you wan to logout?');

 if(logout == false)

 return;

 document.getElementById("frm1").src="SingleSignOnLogout.jsp";

 Form1.action="index.jsp";

 Form1.target="_self";

 Form1.submit();

}

SSO for Host Application on Java Platform

Intellicus Single Sign-on 15

Sample Code for Single Sign-On request:

try

{

HttpSession session=request.getSession(true);

 String intellicusToken=null;

 SingleSignOn singleSignOn=new SingleSignOn();

 //Set user credentials for user to be activated/deleted/suspended by

Admin user.

 // OR set the credentials for logged-in user for End -user requests.

 //user password is not required, if the authentication mode for

organization is "Host Application."

 //These credentials can be fetched from the cre

 String hostAppUserid=(String)session.getAttribute("userId");

 String hostAppOrgId=(String)session.getAttribute("orgId");

 UserInfo userInfo=new UserInfo();

 //set the credentials for logged-in user.

 userInfo.setUserId(hostAppUserid);

 userInfo.setOrgID(hostAppOrgId);

 singleSignOn.setUserInfo(userInfo);

 // Set user credentials for admin user.

 // Admin user credentials are required if some request for admin

activity is raised.

 // Admin activities are like User Management, Database connection

creation/modification etc.

 // These can be read from any property file or from

repository/database.

 // Set user credentials for admin user.

 // Admin user credentials are required if some request for admin

activity is raised.

 // Admin activities are like User Management, Database connection

creation/modification etc.

 // These can be read from any property file or from

repository/database.

 String intellicusAdminUserId="Admin"; //This value can be read

from any property file or database.

 String intellicusAdminOrgId="Intellica";//This value can be read from

any property file or database.

 String intellicusAdminPassword="Admin"; //This value can be read

from any property file or database.

 UserInfo adminUserInfo=new UserInfo();

 adminUserInfo.setUserId(intellicusAdminUserId);

SSO for Host Application on Java Platform

Intellicus Single Sign-on 16

 adminUserInfo.setOrgID(intellicusAdminOrgId);

 adminUserInfo.setPassword(intellicusAdminPassword);

 SingleSignOn.setAdminUserInfo(adminUserInfo);

 // Set the path for Intellicus Web application

 // This can be read from any property file or from

repository/database.

 singleSignOn.setIntellicusURL("http://localhost/intellicus");

 // Set the business parameters/hidden parameters that need to be

passed to Intellicus

 //This can be read from any property file or from

repository/database.

 // for spaces give %20 or +

 singleSignOn.setHiddenParameter("p_CompanyOID","Ultra+Sports+2");

 // get the url for requested Intellicus API like

 // Report listing /Dashboards/User preferences/Query Object list etc.

 String onSuccess=request.getParameter("onSuccess");

 // Check for the availability of Intellicus token in session.

 // If it is not found in session, it means user is first time giving

request to intellicus.

 // So Call the Intellicus methods to get the Token from Intellicus.

 // This token is sent by Host Application for the further interaction

with intellicus.

 // If token is found in session, then it means, user has already

taken token from intellicus.

 // So,no need to get the token again from Intellicus. User can use

the same token which he has.

singleSignOn.setIntellicusExternalURL("http://localhost/intellicus");

 if(session.getAttribute("intellicusToken")==null)//if

token not found in session

 {

 //if user is not available at Intellicus end,

 // it will create the user dynamically and assign the role to

that user.

 singleSignOn.setHiddenParameter("USER_ROLES","Admin");

 //call getIntellicusToken().

SSO for Host Application on Java Platform

Intellicus Single Sign-on 17

 // this method returns a intellicus token string, if user

authentication is done successfully.

 intellicusToken=singleSignOn.getIntellicusToken();

 //if user is authenticated by Intellicus, then only call the

Intellicus redirectionAPI

 //else show the error status message

 if(singleSignOn.isUserAuthenticated())

 {

 session.setAttribute("intellicusToken", intellicusToken);

 singleSignOn.setBusinessParameter("ABC","1");

 singleSignOn.redirectToIntellicus(onSuccess,

intellicusToken, response);

 }

 else // if user authentication fails at Intellicus end

 {

 PrintWriter out=response.getWriter();

 if(Enums.ResponseMessages.AUTHENTICATION_FAILED.equalsIgnoreCase(

 singleSignOn.getUserAuthenticatedMessage()))

 {

 out.println("Invalid Login name or Password");

 }

 else

if(Enums.ResponseMessagse.COULD_NOT_CONNECT_TO_REPORT_SERVER.equalsIgno

reCase(

 singleSignOn.getUserAuthenticatedMessage()))

 {

 out.println("Report Server is Down");

 }

 else

if(Enums.ResponseMessages.REPOSITORY_DB_IS_DOWN.equalsIgnoreCase(

 singleSignOn.getUserAuthenticatedMessage()))

 {

 out.println("Repository Database Connection is Down");

 }

 else

 {

 out.println(singleSignOn.getUserAuthenticatedMessage());

 }

SSO for Host Application on Java Platform

Intellicus Single Sign-on 18

}

}

else// if token found in session

{

singleSignOn.setBusinessParameter("ABC","2");

singleSignOn.redirectToIntellicus(onSuccess, intellicusToken,

response);

 }

}

 catch(SingleSignOnException e)// if connection for the intellicusURL

can not be opened.Reason can be

//Intellicus url is wrong or Report Server is down.

{

 PrintWriter out=response.getWriter();

 out.println("Intellicus Web Application Not Available ");

}

 catch(Exception e)

 {

 PrintWriter out=response.getWriter();

 out.println("Intellicus Web Application Not Available ");

 }

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 19

SSO for Host Application on .Net Platform

Configurations Required

Configuring Host Application

In order to invoke methods at Intellicus end, the file intellicaSSO.dll needs to be

placed in host application‟s library.

This dll will be provided with intellicus setup.

Path for dll file: <Install_Path>\APIs\SingleSignOn\DotNet

Note: For Intellicus version earlier than 4.1, this file can be requested to

Intellicus Support.

 Host application needs to set Intellicus web application url.

Configuring Intellicus

Intellicus application contains Integration.xml file for integration and dynamic

user creation activities.

 In Integration.xml, set business parameters required to pass (If any)

 Set CREATE_USER for Dynamic User creation in Intellicus.

This xml file contains the information regarding integration like user role,

dynamic category creation etc.

Path for Integration.xml:

<Intellicus_Install_path>\Jakarta\webapps\intellicus\WEB-INF

Note: Host application needs to give details in xml according to their

requirements.

Corresponding to this integration xml file content, createUser() method in

ReportControllerDetails.JSP at the Intellicus end should be defined.

Sample Integration xml and Controller jsp are provided with the Intellicus

Setup.

Note: For Intellicus version earlier than 4.1,

ReportController.jsp,ReportController.Detail.jsp,LaunchPortal.jsp can be

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 20

requested to Intellicus Support and should be placed at

<Intellicus_install_path>\Jakarta\webapps\intellicus.

Implementation for Single Sign-On Request

Implementation code can be written inside any aspx of Host application.

1. Host application needs to add intellicaSSO.dll in their application.

2. Host application needs to import namespace

Intellicus.Integration.SingleSignOn.

using Intellicus.Integration.SingleSignOn;

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

Constructor

public UserInfo()

Constructor

public UserInfo(String userId, String orgId)

Parameters:

 userId : User Id of the logged in user

 orgId : Organization id of the logged in user

5. Set this userInfo object to UserInfo property of SingleSignOn class.

singleSignOn.UserInfo = userInfo;

6. Set the IntellicusUrl. Intellicus url can be read from property file.

7. If host application wants to set some hidden parameters, then invoke the

setHiddenParameter (String paramName, String paramValue) for each hidden

parameter.

These parameters can be read from property/xml file.

Method:

This method puts the hidden parameter into the hashmap for hidden parameters.

public void setHiddenParameter(String paramName,String

paramValue)

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 21

Parameters:

 paramName: Name of the business parameter.

 paramValue: Value of the business parameter.

Note: This method would be called before calling, the getIntellicusToken

method. User can not change/update the parameters set through this

method. If these parameters need to be changed,then host application

need to request intellicusToken again in order to consider new value for

these parameters.

8. Check for the Intellicus Token availability in session. If its not available in

session then got to step 11 else go to step 12.

9. Call the getIntellicusToken () method of SingleSignOn class to get the token

from Intellicus.

Method:

This method calls Intellicus API and passes the user credentials and other hidden

parameters to Intellicus. It throws SingleSignOnException.

public String getIntellicusToken()

Returns:

 TokenString: Received token from Intellicus

10. If host application gets the token from Intellicus, then it redirects the request

to Intellicus redirectionAPI with token.

Host Application can set the name of intellicusRedirectionAPI. Its default

value is “LaunchPortal.jsp”.

Property:

This property sets the name of Intellicus jsp to which request is redirected.

 public String IntellicusRedirectionAPI

 {

 get { return intellicusRedirectionAPI; }

 set { intellicusRedirectionAPI = value; }

}

IntellicusRedirectionAPI: Name of the jsp at Intellicus end to which host

application wants to redirect the request after user authentication

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 22

11. If host application wants to set some other business parameters, then invoke

the setBusinessParameter (String paramName, String paramValue) for each

such parameter.

These parameters can be read from property, xml file.

Method:

This method puts the business parameter into the hashmap for request

parameters.

public void setBusinessParameter(String paramName,String

paramValue)

Parameters:

 paramName: Name of the request parameter

 paramValue: value of the request parameter.

Note: This method would be called before calling, the redirectToIntellicus

method. Parameters set in this method can be updated without

requesting new token.

12. After setting the name of the redirectionAPI, invoke the method for

redirecting the request to Intellicus.

Method:

This method sets the name of Intellicus jsp to which request is redirected. It

throws SingleSignOnException.

public void redirectToIntellicus(String onSuccess,String

intellicusToken)

Parameters:

 onSuccess: Name of the requested Intellicus API.

 intellicusToken: Token received from Intellicus after user authentication.

 response: It is the HttpServletResponse object. It is used for redirecting a

request.

13. If host application does not get the token from intellicus i.e. if user

authentication fails at Intellicus end, then host application can show their

error page or error message based on the status message returned by the

Intellicus.

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 23

14. If logout action is invoked at Host application end, then logout action should

also be invoked at the Intellicus end.

Call the method logoutFromIntellicus() method of SingleSignOn class to

invalidate the session at Intellicus end.

Method:

This method puts the business parameter into the hashmap for business

parameters.

public void logoutFromIntellicus()

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 24

Getter/Setter property for each UserInfo attributes

1. Get/Set the User id

public string UserId

{

get { return userId; }

 set { userId = value; }

}

2. Get/Set the User Password.

public string Password

{

 get { return password; }

set { password = value; }

}

3. Get/Set the User's Organization id

public string Organization

{

 get { return orgID; }

set { orgID = value; }

}

4. Get/Set the User's status (ACTIVE / SUSPENDED).

public string Status

{

get { return status; }

 set { status = value; }

}

5. Get/Set the user to Super Admin ("true"/"false").

public bool IsSuperAdmin

{

get { return isSuperAdmin; }

 set { isSuperAdmin = value; }

}

6. Get/Set the user to Admin("true"/"false").

public bool IsAdmin

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 25

{

 get { return isAdmin; }

set { isAdmin = value; }

}

7. Get/Set role Id's belonging to that user.

public string RoleIds

{

 get { return roleIds; }

 set { roleIds = value; }

}

8. Get/Set role User's Description.

public string Description

{

get { return description; }

 set { description = value; }

}

9. Get/Set the session id.

public string SessionId

{

 get { return sessionId; }

set { sessionId = value; }

}

10. Get/Set Security Descriptor.

public string SecurityDescriptor

{

 get { return securityDescriptor; }

 set { securityDescriptor = value; }

}

11. Get/Set customer Id.

public string CustomerId

{

 get { return customerId; }

set { customerId = value; }

}

12. Get/Set location.

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 26

public string Location

{

 get { return location; }

 set { location = value; }

}

13. Get/Set locale.

public string Locale

{

 get { return locale; }

 set { locale = value; }

}

14. Get/Set database name.

public string DBName

{

get { return dbName; }

set { dbName = value; }

}

15. Get/Set TimeStamp.

public long TimeStamp

{

 get { return longTimeStamp; }

 set { longTimeStamp = value; }

}

Note: Please refer IntellicusSSOEnduserRequest.aspx for end user

request sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\DotNet

Note: Please refer IntellicusSSOLogout.aspx for logout sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\DotNet

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 27

Optional Settings

Controller API

Integrating with Intellicus, Controller API at Intellicus end can be given any

suitable name.

So in order to call the Intellicus controller API, host application can set the name

of controller API by setter property provided by intellicaSSO.dll

Its default name is: ReportController.jsp and ReportControllerDetail.jsp

Property:

This property gets/sets the name of Intellicus jsp to which request is redirected.

public String IntellicusControllerAPI

{

get { return intellicusControllerAPI; }

set { intellicusControllerAPI = value; }

}

IntellicusControllerAPI: Name of the jsp at Intellicus which performs controlling

activities for Intellicus.

This controller API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

Redirection API

It is the API available at Intellicus end to which request is redirected to from

Host application to Intellicus.

Its default name is: LaunchPortal.jsp

Property:

This property gets/sets the name of Intellicus jsp to which request is redirected.

public String IntellicusRedirectionAPI

{

get { return intellicusRedirectionAPI; }

set { intellicusRedirectionAPI = value; }

}

IntellicusRedirectionAPI: Name of the jsp at Intellicus end to which host

application wants to redirect the request after user authentication

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 28

This redirection API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

lbMode

This variable specifies, whether to take reporting request to Load balancer or to

specified Intellicus web server.

Its default value is: false

Property:

This property gets/sets the lbMode as true or false.

public bool LbMode

{

 get { return lbMode; }

set { lbMode = value; }

}

lbRelativePath

This variable specifies the relative path for Load balancer. It is accessed only

when lbMode is true.

Its default value is : /LoadBlancerServlet

Property:

This property gets/sets the lbRelativePath.

public String LbRelativePath

{

 get { return lbRelativePath; }

 set { lbRelativePath = value; }

}

 LbRelativePath: String for relative path

intellicusExternalURL

Intellicus application would be accessed by Host web server (Internal IP) for

getting the IntellicusToken.

But an End User can Access the Host application from some outer network. As

host application need to redirect the request for Intellicus HTTP APIs from

browser, an External IP for Intellicus web application need to be specified.

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 29

intellicusExternalURL: This variable specifies the external URL for Intellicus web

application.

Method:

This method is to set the External URL for Intellicus.

public String IntellicusExternalURL

{

 get { return intellicusExternalURL; }

 set { intellicusExternalURL = value; }

}

Parameters:

 intellicusExternalURL: String for external URL.

Sample Code for Single Sign-On request:

String intellicusToken = null;

String hostAppUserid = null;

String hostAppOrgId = null;

SingleSignOn singleSignOn = new SingleSignOn();

try

{

#region Creating UserInfo

 //Set the credentials for logged-in user for End -user

 //requests.

 // user password is not required, if the authentication mode

 //for organization is "Host Application."

 //These credentials can be fetched from the data structure

 //maintained for the selected user.

 if (Session["userId"] != null)

 hostAppUserid = Session["userId"].ToString();

 if (Session["orgId"] != null)

 hostAppOrgId = Session["orgId"].ToString();

 //set the credentials for the user to be

 // activated/deleted/suspended/modified

 UserInfo userInfo =new UserInfo();

 userInfo.UserId = hostAppUserid;

 userInfo.OrgID = hostAppOrgId;

 singleSignOn.UserInfo = userInfo

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 30

#endregion

#region Create AdminInfo

 //Set user credentials for admin user.

 //Admin user credentials are required if some request for

 //admin activity is raised.

 //Admin activities are like User Management, Database

 //connection creation/modification etc.

 //These can be read from any property file or from

 //repository/database.

 //This value can be read from any prperty file or database.

 String intellicusAdminUserId = "Admin";

 //This value can be read from any prperty file or database.

 String intellicusAdminOrgId = "Intellica”;

 //This value can be read from any prperty file or database.

 String intellicusAdminPassword = "Admin";

 UserInfo adminUserInfo =new UserInfo();

 adminUserInfo.UserId = intellicusAdminUserId;

 adminUserInfo.OrgID = intellicusAdminOrgId;

 adminUserInfo.Password = intellicusAdminPassword;

 SingleSignOn.AdminUserInfo = adminUserInfo;

#endregion

#region Get/Set Intellicus Path and Parameters

 //Set the path for Intellicus Web application

 //This can be read from any property file or from

 //repository/database.

 singleSignOn.IntellicusURL= "http://192.168.33.165/intellicusvss";

 //Set the business parameters/hidden parameters that need to

 //be passed to Intellicus

 //This can be read from any property file or from

 //repository/database.

 //These parameters should be mentioned in Integration xml.

 //parameter name mentioned here should be same as parameter

 //name mentioned in Integration xml.

singleSignOn.setHiddenParameter("p_CompanyOID","Ultra Sports 5");

singleSignOn.setHiddenParameter("prmCategoryName", "cat1");

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 31

singleSignOn. setHiddenParameter ("REPORT_CONN_NAME", "ReportDB");

 //get the url for requested Intellicus API like

 //Report listing /Dashboards/User preferences/Query Object

 //list etc.

String onSuccess = "./core/CategoryList.jsp";

#endregion

#region Act Based on Token Availability

 //Check for the availability of Intellicus token in session.

 //If it is not found in session, it means user is first time

 //giving request to intellicus.

 //So Call the Intellicus methods to get the Token from

 //Intellicus.

 //This token is sent by Host Application for the further

 //interaction with intellicus.

 //If token is found in session,then it means,user has already

 //taken token from intellicus.

 //So,no need to get the token again from Intellicus.User can

 //use the same token which he has.

 //if token not found in Session

 if (Session["intellicusToken"] == null)

 {

 //if user is not available at Intellicus end,

 // it will create the user dynamically and assign the

 //role to that user.

 // these roles should have entry in Integration xml.

 singleSignOn.setHiddenParameter("USER_ROLES", "Admin");

 //this method returns a intellicus token string ,if

 //user authentication is done successfully.

 intellicusToken = singleSignOn.getIntellicusToken();

 //if user is authenticated by Intellicus

 //then only call the Intellicus redirectionAPI

 //else show the error status message

 if (singleSignOn.IsUserAuthenticated)

 {

 Session["intellicusToken"] = intellicusToken;

 singleSignOn.redirectToIntellicus(onSuccess,

 intellicusToken);

 }

SSO for Host Application on .NET Platform

Intellicus Single Sign-on 32

 else

 {

 string userAuthMsg = singleSignOn.UserAuthenticationMessage;

 if(userAuthMsg.Equals(

 Enums.ResponseMessages.AUTHENTICATION_FAILED))

 {

 Response.Write("Invalid Login name or Password

 OR Invalid Host web server IP");

 }

 else if(userAuthMsg.Equals(

 Enums.ResponseMessages.COULD_NOT_CONNECT_TO_REPORT_SERVER))

 {

 Response.Write("Report Server is Down");

 }

 else if(userAuthMsg.Equals(

 Enums.ResponseMessages.REPOSITORY_DB_IS_DOWN))

 {

 Response.Write("Repository Database Connection

 is Down");

 }

 else

 {

 Response.Write(userAuthMsg);

 }

 }

 }

 else// if token found in session

 {

singleSignOn.redirectToIntellicus(onSuccess,intellicusToken);

 }

#endregion

}

catch(SingleSignOnException ex)

{

 Response.Write(ex.Message);

}

catch (Exception exc)

{

 Response.Write(exc.Message);;

}

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 33

SSO for Host Application on PHP Platform

Configurations Required

Configuring Host Application

In order to invoke methods at Intellicus end, the file intellicaSSO.php needs to

be placed in host application‟s library.

This file will be provided with intellicus setup.

Path for the file: <Install_Path>\APIs\SingleSignOn\PHP

Note: For Intellicus version earlier than 4.1, this php can be requested to

Intellicus Support.

 Host application needs to set Intellicus web application url.

Configuring Intellicus

Intellicus application contains Integration.xml file for integration and dynamic

user creation activities.

 In Integration.xml, set business parameters required to pass (If any)

 Set CREATE_USER for Dynamic User creation in Intellicus.

This xml file contains the information regarding integration like user role,

dynamic category creation etc.

Path for Integration.xml:

<Intellicus_Install_path>\Jakarta\webapps\intellicus\WEB-INF

Note: Host application needs to give details in xml according to their

requirements.

Corresponding to this integration xml file content, createUser() method in

ReportControllerDetails.JSP at the Intellicus end should be defined.

Sample Integration xml and Controller jsp are provided with the Intellicus

Setup.

Note: For Intellicus version earlier than 4.1,

ReportController.jsp,ReportController.Detail.jsp,LaunchPortal.jsp can be

requested to Intellicus Support and should be placed at

<Intellicus_install_path>\Jakarta\webapps\intellicus.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 34

Implementation for Single Sign-On Request

Implementation code can be written inside any php or html file of Host

application.

1. Host application needs to add intellicaSSO.php in their application.

2. Host application file needs to include file intellicaSSO.php.

include_once("intellicaSSO.php");

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

5. Pass this userInfo object to SingleSignOn class using the setUserInfo

(userInfo) method.

public function setUserInfo($userInfo)

Parameters:

 UserInfo: Object reference of UserInfo class.

6. Set the IntellicusUrl. Intellicus url can be read from property file.

7. If host application wants to set some hidden parameters, then invoke the

setHiddenParameter ($paramName, $paramValue) for each hidden parameter.

These parameters can be read from property/xml file.

Method:

This method puts the hidden parameter into the array for hidden parameters.

public function setHiddenParameter($paramName,$paramValue)

Parameters:

 paramName: Name of the business parameter

 paramValue: Value of the business parameter.

Note: This method would be called before calling, the getIntellicusToken

method. User can not change/update the parameters set through this

method. If these parameters need to be changed,then host application

need to request intellicusToken again in order to consider new value for

these parameters.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 35

8. Check for the Intellicus Token availability in session. If its not available in

session then got to step 11 else go to step 12.

9. Call the getIntellicusToken() method of SingleSignOn class to get the token

from Intellicus.

Method:

This method calls Intellicus API and passes the user credentials and other

hidden/business/request parameters to Intellicus.

public function getIntellicusToken()

Returns:

 TokenString: Received token from Intellicus

10. If host application gets the token from Intellicus, then it redirects the request

to Intellicus redirectionAPI with token.

11. Host Application can set the name of redirectionAPI. Its default value is

“LaunchPortal.jsp”.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

 public function setRedirectionAPI($redirectionAPI)

Parameters:

 redirectionAPI: Name of the jsp at Intellicus end to which host application

wants to redirect the request after user authentication

12. If host application wants to set some other business parameters, then invoke

the setBusinessParameter ($ paramName, $paramValue) for each such

parameter.

These parameters can be read from property, xml file.

Method:

This method puts the business parameter into the array for request parameters.

public function setBusinessParameter($paramName,$paramValue)

Parameters:

 paramName: Name of the request parameter.

 paramValue: value of the request parameter.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 36

Note: This method should be called before calling, the

redirectToIntellicus method. Parameters set in this method can be

updated without requesting new token.

13. After setting the name of the redirectionAPI, invoke the method for

redirecting the request to Intellicus.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

public function redirectToIntellicus($onSuccess,$

intellicusToken)

Parameters:

 onSuccess: Name of the requested Intellicus API.

 intellicusToken: Token received from Intellicus after user authentication.

14. If host application does not get the token from intellicus i.e. if user

authentication fails at Intellicus end, then host application can show their

error page or error message based on the status message returned by the

Intellicus.

Setter method for each UserInfo attributes

1. Method to set the User id

public function setUserId ($userId)

Parameters:

 userId: User id.

2. Method to set the User Password

public function setPassword ($password)

Parameters:

 password: password for the user.

3. Method to set the User's Organization id

public function setOrgID ($orgID)

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 37

Parameters:

 orgID: organization id for the user.

4. Method to set session id

public function setSessionId ($sessionId)

Parameters:

 sessionId: session id for the user.

5. Method to set Security Descriptor

public function setSecurityDescriptor ($securityDescriptor)

Parameters:

 securityDescriptor: any specific information about the user.

6. Method to set customer Id

public function setCustomerId ($customerId)

Parameters:

 customerId: customer id for the user.

7. Method to set location

public function setLocation ($location)

Parameters:

 location: location for the user.

8. Method to set locale

public function setLocaleForIntellicus ($locale)

Parameters:

 locale: locale for the user.

9. Method to set database name

public function setDBName ($dbName)

Parameters:

 dbName: Database name for the user.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 38

10. Method to set TimeStamp

public function setTimeStamp($longTimeStamp)

Parameters:

 longTimeStamp: timestamp for the user.

11. Method to set the User's status(ACTIVE / SUSPENDED)

public function setStatus ($status)

Parameters:

 status: status of the user i.e. user is active or suspended.

12. Method to set the user to Super Admin("true"/"false")

public function setIsSuperAdmin ($isSuperAdmin)

Parameters:

 isSuperAdmin: Whether user is Super admin or not.

13. Method to set the user to Admin("true"/"false")

public function setIsAdmin ($isAdmin)

Parameters:

 isAdmin: Whether user is admin or not.

14. Method to set role Id's belonging to that user

public function setRoleIds ($roleIds)

Parameters:

 roleIds: Role that should be assigned to this user.

15. Method to set User's Description

public function setDescription ($description)

16. Method to set System Privileges

public function setSystemPrivileges($systemPrivileges)

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 39

Parameters:

 systemPrivileges: system privileges for a user.

17. Method to set blank password

public function setBlankPassword($blankPassword)

Parameters:

 blankPassword: it is true or false.

Note: Please refer IntellicusSSOEnduserRequest.php for end user request

sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\PHP

Note: Please refer IntellicusSSOLogout.php for logout sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\PHP

Optional Settings

Controller API

This is the main controller for the integration of Intellicus with a host

application. It reads information from Integration.xml and sets hidden

parameters (like domain ID and workspace ID) at Intellicus end.

Default name of this api is: ReportController.jsp and ReportControllerDetail.jsp

If required, name of this API can be changed.

To call this API using different name than default names, you need to use

method given below.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

public function setIntellicusControllerAPI

($intellicusControllerAPI)

Parameters:

 intellicusControllerAPI: Name of the jsp at Intellicus which performs

controlling activities for Intellicus.

This controller API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 40

Redirection API

It is the API available at Intellicus end to which request is redirected to from

host application to Intellicus.

Its default name is: LaunchPortal.jsp

If required, name of this API can be changed.

To call this API using different name than default names, you need to use

method given below.

Method:

This method sets the name of Intellicus jsp to which request is redirected.

 public function setRedirectionAPI($redirectionAPI)

Parameters:

 redirectionAPI: Name of the jsp at Intellicus end to which host application

wants to redirect the request after user authentication

This redirection API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

lbMode

Intellicus web application can be running on multiple web servers, so in such

scenario a load balancer feature is used to decide which web server should serve

the reporting request from Host application.

Host application need to specify whether reporting request is sent to load

balancer or to a particular web server (in case i f there is single web server for

Intellicus application).

lbMode: This variable specifies whether to take reporting request to Load

balancer or to particular Intellicus web server.

Its default value is: false

It means no load balancer is in picture.

Method:

This method sets the lbMode as true or false.

 public function setLbMode($lbMode)

Parameters:

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 41

 lbMode: boolean value.

lbRelativePath

This variable specifies the relative path for Load balancer. It is accessed only

when lbMode is true.

Its default value is: /LoadBlancerServlet .

Method:

This method sets the lbMode as true or false.

 public function setLbRelativePath($lbRelativePath)

Parameters:

 lbRelativePath: String for relative path.

intellicusExternalURL

Intellicus application would be accessed by Host web server (Internal IP) for

getting the IntellicusToken.

But an End User can Access the Host application from some outer network. As

host application need to redirect the request for Intellicus HTTP APIs from

browser, an External IP for Intellicus web application need to be specified.

intellicusExternalURL: This variable specifies the external URL for Intellicus

web application.

Method:

This method is to set the External URL for Intellicus.

public function setIntellicusExternalURL($intellicusExternalURL)

Parameters:

 intellicusExternalURL: String for external URL.

Implementation for Logout

On logout from host application, session for the user is invalidated and user is

redirected to home page of Host application. Now new user can login through

same window.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 42

As Host application and Intellicus web application are running on different web

servers, so if Host application user logout from that application, it does not

destroy the session in Intellicus for that user.

In order to destroy a session in Intellicus corresponding to a Host application

end user, Host application need to invoke logout method of Intellicus as well.

So logout needs implementation for both host application as well as Intellicus.

Note: If on logout, Host appliaction is closing the current window, then

there is no need of invoking the logout action at Intellicus. A new user

will login through new window, so new session will be created for that

user.

Implementation code can be written inside any php or html file of Host

application.

1. Host application need to add intellicaSSO.php in their application.

2. Host application needs to include file intellicaSSO.php.

include_once("intellicaSSO.php");

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Set the IntellicusUrl. Intellicus url can be read from property file.

5. call the method logoutFromIntellicus of SingleSignOn.

Method:

public function logoutFromIntellicus()

Sample Code for Single Sign-On request:

include_once("intellicaSSO.php");

try

{

 $sso=new SingleSignOn();

 // Set the path for Intellicus Web application

 // This can be read from any property file or from

repository/database.

 // In lbMode , give the URl for LB application,

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 43

 // else give the URL for Intellicus Web application.

 $sso->setIntellicusURL("http://192.168.33.165/intellicus");

 //$sso->setLbMode(TRUE);

 // Set the credentials for logged-in user for End -user

requests.

 // user password is not required, if the authentication mode

for organization is "Host Application."

 // This user must exist at Intellicus.

 $userinfo=new UserInfo;

 $userinfo->setUserId("a");

 $userinfo->setOrgID("ab");

 /*$userinfo->setUserId((string)$_SESSION['userId']);

 $userinfo->setOrgID((string)$_SESSION['orgId']);*/

 $sso->setUserInfo($userinfo);

 // Set user credentials for admin user.

 // Admin user credentials are required if some request for

admin activity is raised.

 // Admin activities are like User Management, Database

connection creation/modification etc.

 // These can be read from any property file or from

repository/database.

 $adminUserinfo=new UserInfo;

 $adminUserinfo->setUserId("Admin");

 $adminUserinfo->setPassword("Admin");

 $adminUserinfo->setOrgID("Intellica");

 //$sso->setAdminUserInfo($adminUserinfo);

 SingleSignOn::setAdminUserInfo($adminUserinfo);

 //Set the business parameters/hidden parameters that need to be

passed to Intellicus

 //This can be read from any property file or from

repository/database.

 $sso->setHiddenParameter("p_CompanyOID","Company_xyz");

 session_start();

 // get the url for requested Intellicus API like

 // Report listing /Dashboards/User preferences/Query Object

list etc.

 //$onSuccess="./core/ReportListForCategory.jsp?REPORT_TYPE=ADHO

C";

 $onSuccess="./core/CategoryList.jsp?";

 // Check for the availability of Intellicus token in session.

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 44

 // If it is not found in session, it means user is first time

giving request to intellicus.

 // So Call the Intellicus methods to get the Token from

Intellicus.

 // This token is sent by Host Application for the further

interaction with intellicus.

 // If token is found in session,then it means,user has already

taken token from intellicus.

 // So,no need to get the token again from Intellicus.User can

use the same token which he has.

 if($_SESSION['intellicusToken']==null)

 {

 //if user is not available at Intellicus end,

 // it will create the user dynamically and assign the role

to that user.

 // these roles should have entry in Integration xml.

 $sso->setHiddenParameter("USER_ROLES","Admin");

 //call getIntellicusToken().

 // this method returns a intellicus token string ,if user

authentication is done successfully.

 $token=$sso->getIntellicusToken();

 //if user is authenticated by Intellicus,then only call

the Intellicus redirectionAPI

 //else show the error status message

 if(trim($sso->isUserAuthenticated())=="TRUE")

 {

 $_SESSION['intellicusToken']=$token;

 $sso->setBusinessParameter("ABC","1");

 $sso->redirectToIntellicus($onSuccess,$token);

 }

 else // if user authentication fails at Intellicus end

 {

 print_r($sso->getUserAuthenticationMessage());

 }

 }

 else // if token found in session

 {

 $sso->setBusinessParameter("ABC","2");

 $sso->redirectToIntellicus($onSuccess,$token);

 }

}

SSO for Host Application on PHP Platform

Intellicus Single Sign-on 45

catch(SingleSignOnException $e)// if connection for the

intellicusURL can not be opened.Reason can be

//Intellicus url is wrong or Report Server is down.

{

 print_r("Intellicus Web Application Not Available");

}

catch(Exception $e)

{

 print_r("Intellicus Web Application Not Available");

}

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 47

SSO for Host Application using COM

Configurations Required

Configuring Host Application

In order to invoke methods at Intellicus end, the file IntellicusCOMSSO.dll needs

to be placed in host application‟s library.

This dll will be provided with intellicus setup.

Path for dll file: <Install_Path>\APIs\SingleSignOn\COM

Note: IntellicusCOMSSO.dll requires Microsoft_VC80_ATL_x86.msm,

Microsoft_VC80_CRT_x86.msm, Microsoft_VC80_MFC_x86.msm and

corresponding policy files in order to function properly. If any of the

above mentioned file is missing then IntellicusCOMSSO.dll may not be

registered or behave as desired.

Note: If IntellicusCOMSSO.dll is not found on the above mentioned path

then IntellicusCOMSSO.dll and its dependencies can be requested from

Intellicus support on demand.

 After placing the IntellicusCOMSSO.dll in host application‟s library path,

IntellicusCOMSSO.dll needs to be registered by using following command

from command prompt.

 regsvr32 “<Host Application Library Path>/IntellicusCOMSSO.dll”

Implementation for Single Sign-On Request

Implementation code can be written in any application using language which

supports COM technology e.g. VB, VC++, VB.net, C#.net etc.

1. Host application needs to import/add “IntellicusCOMSSO.dll” in their

application. In VB/.Net, user needs to add the reference of

“IntellicusCOMSSO.dll” in the application while in VC++ user needs to import

“IntellicusCOMSSO.dll” in the application using following command.

#import “<Host Application Library Path>/IntellicusCOMSSO.dll”

2. Make an object of SingleSignOn class for invoking the methods of this class.

3. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 48

4. Set this userInfo object to UserInfo property of SingleSignOn class.

Usage:

singleSignOn.UserInfo = userInfo;

Method:

Property UserInfo As UserInfo

5. Set the IntellicusUrl. Intellicus url can be read from property file.

Usage:

singleSignOn.IntellicusURL = "http://192.168.33.92:85/intellicus"

Method:

Property IntellicusURL As String

6. If host application wants to set some hidden parameters, then invoke the

setHiddenParameter (String paramName, String paramValue) for each hidden

parameter.

These parameters can be read from property/xml file.

Usage:

singleSignOn.SetHiddenParameter "USER_ROLES", "Admin"

Method:

Sub SetHiddenParameter(bstrParamName As String, bstrParamValue As

String)

Parameters:

 bstrParamName: Name of the business parameter.

 bstrParamValue: Value of the business parameter.

Note: This method would be called before calling, the getIntellicusToken

method. User can not change/update the parameters set through this

method. If these parameters need to be changed,then host application

need to request intellicusToken again in order to consider new value for

these parameters.

7. Check for the Intellicus Token availability in session. If its not available in

session then go to step 8 else go to step 9.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 49

8. Call the getIntellicusToken () method of SingleSignOn class to get the token

from Intellicus.

Usage:

strToken = singleSignOn.GetIntellicusToken

Method:

This method calls Intellicus API and passes the user credentials and other hidden

parameters to Intellicus. It throws Exception of type _com_error.

Function GetIntellicusToken() As String

Returns:

 TokenString: Received token from Intellicus

9. If host application does not get the token from intellicus i.e. if user

authentication fails at Intellicus end, then host application can show their

error message or screen based on the status message returned by the

Intellicus.

10. If host application gets the token from Intellicus, then it will be the

responsibility of host application to build the request URL using token and

redirect it.

11. If logout action is invoked at Host application end, then logout action should

also be invoked at the Intellicus end. Again it will be the responsibility of host

application to build the logout url and hit it.

Getter/Setter property for each UserInfo attributes

1. Get/Set the User id

Property UserId As String

2. Get/Set the User Password.

Property Password As String

3. Get/Set the User's Organization id

Property Organization As String

4. Get/Set the User's status (ACTIVE / SUSPENDED).

Property Status As String

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 50

5. Get/Set the user to Super Admin ("true"/"false").

Property IsSuperAdmin As Boolean

6. Get/Set the user to Admin("true"/"false").

Property IsAdmin As Boolean

7. Get/Set role Id's belonging to that user.

Property RoleIds As String

8. Get/Set role User's Description.

Property Description As String

9. Get/Set the session id.

Property SessionId As String

10. Get/Set Security Descriptor.

Property SecurityDescriptor As String

11. Get/Set customer Id.

Property CustomerId As String

12. Get/Set location.

Property Location As String

13. Get/Set locale.

Property Locale As String

14. Get/Set database name.

Property DBName As String

15. Get/Set TimeStamp.

Property LongTimeStamp As Long

Note: Please refer IntellicusSSOEnduserRequest.frm for end user request

sample code.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 51

Path: <Install_Path>\SampleCodes\SingleSignOn\COM

Note: Please refer IntellicusSSOEnduserRequest.frm for logout sample

code.

Path: <Install_Path>\SampleCodes\SingleSignOn\COM

Optional Settings

Controller API

Integrating with Intellicus, Controller API at Intellicus end can be given any

suitable name.

So in order to call the Intellicus controller API, host application can set the name

of controller API by setter property provided by IntellicusCOMSSO.dll

Its default name is: ReportController.jsp and ReportControllerDetail.jsp

Property:

This property gets/sets the name of Intellicus jsp to which request is redirected.

Property IntellicusControllerAPI As String

IntellicusControllerAPI: Name of the jsp at Intellicus which performs controlling

activities for Intellicus.

This controller API is placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

Redirection API

Redirection API is not supported by IntellicusCOMSSO.dll.

lbMode

load balancer is not yet supported by IntellicusCOMSSO.dll.

lbRelativePath

load balancer is not yet supported by IntellicusCOMSSO.dll.

Sample Code for Single Sign-On request:
Following sample code is written in VB which demonstrates how to use

IntellicusCOMSSO.dll in the application. This code uses „WebBrowser‟ control for

url navigation. This control is shipped with internet explorer as a group named

„Microsoft Internet Controls‟ and can be found either in „ieframe.dll‟ or

„SHDOCVW.dll‟ depending on the version of IE installed.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 52

'This sample code provides the basic understanding of how to use

IntellicusCOMSSO.dll in host

'application for signle sign on purpose.

'DISCLAIMER:

'1 Values provided for Intellicus url, user credentials like user

id, password, organization id are

'not actual. This is given for demonstration purpose. These

values may need to change according to

'the host enviornment settings.

Option Explicit

Dim sso As New IntellicusCOMSSOLib.SingleSignOn

Dim userInfo As New IntellicusCOMSSOLib.userInfo

Dim strToken As String

'Define constants for Intellicus Web application and controller

API

Const strIntellicusUrl As String =

"http://192.168.33.92:85/intellicus"

'Get the token from Intellicus.

Private Function GetIntellicusToken(ByRef strMsg As String) As

Boolean

With sso

 'Set the path for Intellicus Web application

 'This can be read from any property file or from

 'repository/database.

 .IntellicusURL = strIntellicusUrl

 'Set user info.

 .userInfo = userInfo

 'Set the business parameters/hidden parameters that need to

 'be passed to Intellicus

 'This can be read from any property file or from

 'repository/database.

 .SetHiddenParameter "USER_ROLES", "Admin"

 'Get the authentication token from Intellicus.

 strToken = .GetIntellicusToken

 'Check if user is not authenticated suceessfully or

 'the token is empty then show the error message to

 'user and exit.

 If .IsUserAuthenticated = False Or strToken = "" Then

 GetIntellicusToken = False

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 53

 strMsg = .UserAuthenticationMessage

 Exit Function

 End If

End With

 GetIntellicusToken = True

End Function

Private Sub cmdViewReport_Click()

Dim repid As String

Dim repMenuName As String

Dim catid As String

Dim url As String

Dim strOnAuthSuccUnEncodedUrl As String

Dim strOnAuthSuccUrl As String

On Error GoTo ErrHandler

'If we dont have token, then get it from intellicus.

If (strToken = "") Then

 'Set user credentials like user id, password, organization id

etc.

 With userInfo

 .UserId = "Admin"

 .Password = "Admin"

 .Organization = "Intellica"

 End With

 Dim strMsg As String

 If (GetIntellicusToken(strMsg) = False) Then

 'For some reason we failed to get the token from

intellicus.

 'show the error message to user.

 MsgBox strMsg

 Exit Sub

 End If

End If

'get the url for requested Intellicus API like

'Report Run/Report listing /Dashboards/Adhoc wizard etc.

repid = "CCCFDB6D-969C-D428-9B5F-93E1BDAE98E5"

catid = "571937DE-9934-90CB-FFD0-371470A44B7E"

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 54

repMenuName = "Demo An Interactive Product Sales Summary - Chart

and Grid"

strOnAuthSuccUnEncodedUrl =

"./InteraController.jsp?DSGN_MODE=ADHOC&REPORT_ID=" & repid & _

 "&ACTION_CODE=222&MENU_NAME=" & repMenuName & _

 "&CATEGORY_ID=" & catid & _

 "&OPERATION_TYPE=VIEW" & _

 "&BATCH_OPERATION_TYPE=EXEC&REPORT_FORMAT=htm"

strOnAuthSuccUrl = sso.GetEncodedUrl(strOnAuthSuccUnEncodedUrl)

url = strIntellicusUrl & "/LaunchPortal.jsp?intellicusToken=" &

strToken & "&OnAuthSuccess=" & strOnAuthSuccUrl

'Navigate to the url.

With WebBrowser1

 .Navigate url

End With

Exit Sub

ErrHandler:

MsgBox Err.Description

End Sub

Private Sub cmdLogout_Click()

 Const strIntellicsControllerApi As String =

"ReportController.jsp"

 'Prepare the logout url

 Dim strLogoutUrl As String

 strLogoutUrl = strIntellicusUrl & "/" &

strIntellicsControllerApi & "?ACTION_CODE=LOGOUT"

 'Logout from Intellicus.

 With WebBrowser1

 .Navigate strLogoutUrl

 End With

 'As user is logged out, dispose the token

 strToken = ""

End Sub

Private Sub cmdAdhocDesigner_Click()

Dim url As String

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 55

Dim strOnAuthSuccUnEncodedUrl As String

Dim strOnAuthSuccUrl As String

On Error GoTo ErrHandler

'If we dont have token, then get it from intellicus.

If (strToken = "") Then

 'Set user credentials like user id, password, organization id

etc.

 With userInfo

 .UserId = "Admin"

 .Password = "Admin"

 .Organization = "Intellica"

 End With

 Dim strMsg As String

 If (GetIntellicusToken(strMsg) = False) Then

 'For some reason we failed to get the token from

intellicus.

 'show the error message to user.

 MsgBox strMsg

 Exit Sub

 End If

End If

'get the url for adhoc wizard.

strOnAuthSuccUnEncodedUrl = "./custom/AdHocWizard.jsp"

strOnAuthSuccUrl = sso.GetEncodedUrl(strOnAuthSuccUnEncodedUrl)

url = strIntellicusUrl & "/LaunchPortal.jsp?intellicusToken=" &

strToken & "&OnAuthSuccess=" & strOnAuthSuccUrl

'Navigate to the url.

With WebBrowser1

 .Navigate url

End With

Exit Sub

ErrHandler:

 MsgBox Err.Description

End Sub

User Management Configuration at Intellicus

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 56

Intellicus application contains Integration.xml file for integration and dynamic

user creation activities.

 In Integration.xml, set business parameters required to pass (If any)

 Set CREATE_USER for Dynamic User creation in Intellicus.

This xml file contains the information regarding integration like user role,

dynamic category creation etc.

Path for Integration.xml:

<Intellicus_Install_path>\Jakarta\webapps\intellicus\WEB-INF

Note: Host application needs to give details in xml according to their

requirements.

Corresponding to this integration xml file content, createUser() method in

ReportControllerDetails.JSP at the Intellicus end should be defined.

Sample Integration xml and Controller jsp are provided with the Intellicus

Setup.

Note: For Intellicus version earlier than 4.1,

ReportController.jsp,ReportController.Detail.jsp,LaunchPortal.jsp can be

requested to Intellicus Support and should be placed at

<Intellicus_install_path>\Jakarta\webapps\intellicus.

Sample XML file for Integration
 (Integration.xml)

Integration xml file contains the various integration requirement details.

Integration requirement may include User management, Host web server IP

authentication, Admin user credentials, etc.

Host application would require making changes in the ReportController.jsp and

ReportControllerDetail.jsp corresponding to details mentioned in this integration

xml.

These two JSPs are placed at:

<Intellicus_Install_path>\Jakarta\webapps\intellicus

Note: If any changes are made in xml, then Intellicus Web server need

to be restarted.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 57

Below is sample of Integration xml:

<INTEGRATION_DETAILS CREATE_USER="true" CREATE_ORG="true"

CREATE_MAPPING="true" UPDATE_CONN_AR="true"

PERMISSION_TO_CONN="ROLE" UPDATE_USER="true" >

 <HOST_WEBSERVER_DETAIL IP="">

 </HOST_WEBSERVER_DETAIL>

 <ADMIN_USER>

 <ID USERID="" PASSWORD="" ORGID=""/>

 </ADMIN_USER>

 <REPORTING_ROLES UPDATE_ORG_ROLES="true"

UPDATE_USER_ROLES="false">

 <REPORTING_ROLE NAME="Basic">

 <ENTITY_TYPES>

 <ENTITY_TYPE TYPE="CAT">

 <ENTITY CREATION="Static" ID="4F9245A7-

D639-4F99-604D-F32641B77725" ACCESS_LEVEL="2"

ACCESSRIGHT="0,2,4,6,8,10,12" ></ENTITY>

 <ENTITY CREATION="Dynamic"

ID="<%prmCategoryName%>" ACCESS_LEVEL="2"

ACCESSRIGHT="0,2,4,6,8,10,12" PARAM="prmCategoryName"></ENTITY>

 </ENTITY_TYPE>

 </ENTITY_TYPES >

 </REPORTING_ROLE>

 <REPORTING_ROLE NAME="Admin">

 <ENTITY_TYPES >

 <ENTITY_TYPE TYPE="CAT">

 <ENTITY CREATION="Static" ID="Setup"

ACCESS_LEVEL="2" ACCESSRIGHT="0,2,4,6,8,10,12" ></ENTITY>

 <ENTITY CREATION="Dynamic"

ID="Finance_<%prmCategoryName%>" ACCESS_LEVEL="2"

ACCESSRIGHT="0,2,4,6,8,10,12" PARAM="prmCategoryName"></ENTITY>

 <ENTITY CREATION="Dynamic"

ID="HR_<%prmCategoryName%>" ACCESS_LEVEL="2"

ACCESSRIGHT="0,2,4,6,8,10,12" PARAM="prmCategoryName"></ENTITY>

 </ENTITY_TYPE>

 </ENTITY_TYPES>

 </REPORTING_ROLE>

 </REPORTING_ROLES>

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 58

</INTEGRATION_DETAILS>

Details of xml:

 <INTEGRATION_DETAILS> tag:

CREATE_USER:

Possible values:

 true: Check for existence of User at run time. If User does not exist, create

the User at Intellicus.

 false: Do not check for existence of User at run time.

If CREATE_USER is true then only further attributes like CREATE_ORG,

CREATE_MAPPING will be considered.

No other tag/attribute in xml is dependent on CREATE_USER attribute.

Dynamic user creation is supported only for “Host Application” and “Call Back”

authentication mode.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 59

CREATE_ORG:

This attribute is read only when CREATE_USER is true.

Dynamic organization creation is supported only for “Host Application”

authentication mode.

Possible values:

 true: Check for existence of Organization at run time. If Organization does

not exist, create the Organization at Intellicus.

 false: Do not check for existence of Organization at run time .

CREATE_MAPPING:

This attribute is read only when CREATE_USER is true.

Possible values:

 true: Check for existence for user mapping at run time if user already exists.

If user mapping does not exist, create the mapping of at Intellicus.

 False: Do not check for existence for user mapping at run time if user

already exists.

UPDATE_CONN_AR:

Possible value: true/false

 true: Allow modification of access control for any DBCONNECTION Object at

Intellicus.

 false: Do not allow modification of access control for any DBCONNECTION

Object at Intellicus.

PERMISSION_TO_CONN:

This attribute is read only when UPDATE_CONN_AR is true.

It is for providing access control of any DBCONNECTION to any ORG/ROLE/USER.

Possible values: ORG/ ROLE/USER.

 ORG: Grant access control of DBCONNECTION Object on ORG. ORG can be

existing/new.

 ROLE: Grant access control of DBCONNECTION Object on ROLE level. ROLE

can be existing/new.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 60

 USER: Grant access control of DBCONNECTION Object on USER level. USER

can be existing/new.

UPDATE_USER:

This is applicable for both new user (user mapping is added for existing user) as

well as existing user

Possible value: true/false

 true: Allow modification of existing user‟s attributes.

 false: Do not allow modification of existing user‟s attributes

<HOST_WEBSERVER_DETAIL> tag:

IP:

List of IP addresses separated by ',' on which Host application is running.

If host application is running on multiple web servers, then IP address for each

web server should be mentioned, separated by “,”.

If this authentication is not required, then leave the IP attribute of the

<HOST_WEBSERVER_DETAIL> tag empty.

Note: If both Host application and Intellicus are running on the same

web server, then give the IP address of localhost i.e. 127.0.0.1

 <ADMIN_USER> tag:

Credentials of admin user having system privileges of super admin can be

entered in this xml under the tag <ADMIN_USER>.

 <REPORTING_ROLES> tag:

All the reporting roles should be defined in this xml under this tag. Only those

roles that are defined under this tag are created at Intellicus.

UPDATE_ORG_ROLES:

Possible values:

 true: check for the existence of the roles at run time to match with xml if org

already exists. If any role does not exist, then add that role to the

organization.

 false: Do not check for the existence of the roles at run time to match with

xml if org already exists.

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 61

UPDATE_USER_ROLES:

Possible values:

 true: check for the role assigned to user at run time to match with xml , if

user already exists.

 false: Do not check for the role assigned to user at run time to match with

xml, if user already exists.

Each reporting role has following properties:

Name: Name of the role

Access right of Role are:

1. ENTITY_TYPE: It can be "CAT" for category or "REPORT" for report.

2. ENTITY on which access need to be provided.

3. Attributes of ENTITY if ENTITY_TYPE is CAT are:

CREATION: If the entity will be created dynamically or manually.

 Dynamic: For dynamic creation.

 Static: For manual creation.

ID: Id of entity.

ACCESS_LEVEL:

 Deny Access: 0.

 Full Access: 1.

 Partial Access: 2.

ACCESSRIGHT: The possible values for entity type category are

 View reports: 0.

 View reports secured: 1

 Save reports: 2

 Save reports secured:3

 Export reports: 4.

 Export reports secured: 5

 Print reports: 6

 Print reports secured: 7

 Print reports at server: 8

Sample XML file for Integration (Integration.xml)

Intellicus Single Sign-on 62

 Print reports at server secured: 9

 Schedule reports: 10

 Publish layouts: 11

 Publish outputs: 12

PARAM: If any parameter is associated with that entity. This is applicable to

only Dynamic creation entities.

Admin Activities Performed through SSO

Intellicus Single Sign-on 63

Admin Activities Performed through SSO

Admin activities deal with the action performed by Admin user of Intellicus.

It includes User Management at Intellicus.

User management takes care of following activities:

 User create/activate/delete/suspend operation initiated by Admin User.

For admin activities in Intellicus, host application need to send admin user

credentials to Intellicus. This admin user should exist in Intellicus and must have

super administrator system privilege.

Integration Flow:

Steps:

1. In Host Application, user sends request for admin activity at Intellicus. With

this request host application sends user credentials, Intellicus admin user

credentials and appropriate action code.

2. Using Intellicus SSO Libraries, host application send request for Intellicus

Controller API.

3. Intellicus web server send request to report server for admin activity.

4. A status message is sent back to the host application both in case of activity

requested is performed successfully or failed.

Host Application on Java Platform

Implementation code can be written inside any jsp or servlet of Host application.

1. Host application need to add intellicaSSO.jar in their application.

Admin Activities Performed through SSO

Intellicus Single Sign-on 64

2. Host application need to import class Enums.java, SingleSignOn.java,

SingleSignOnException.java, UserInfo.java.

import com.intellicus.integration.singlesignon.Enums;

import com.intellicus.integration.singlesignon.SingleSignOn;

import com.intellicus.integration.singlesignon.SingleSignOn

Exception;

import com.intellicus.integration.singlesignon.UserInfo;

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

Constructor

public UserInfo()

Constructor

public UserInfo (String userId,String password,String orgId)

Parameters:

 userId: User Id of the logged in user

 password: Password of the logged in user.

 orgId: Organization id of the logged in user

Constructor

public UserInfo (String userId, String orgId)

Parameters:

 userId: User Id of the logged in user.

 orgId: Organization id of the logged in user.

5. Pass this userInfo object to SingleSignOn class using the setUserInfo

(userInfo) method.

public void setUserInfo(UserInfo userInfo)

Parameters:

 UserInfo: Object reference of UserInfo class.

Admin Activities Performed through SSO

Intellicus Single Sign-on 65

6. Make an object of UserInfo class for Admin user info. Set the user credentials

for Admin user in Intellicus in this object.

7. Set the IntellicusUrl.

8. Intellicus url can be read from property file or some database or repository.

9. Set the action code. Action code is required to specify which action admin

user want to perform in Intellicus.

Action code can be:

 ACTIVATE_USER

 DELETE_USER

 SUSPEND_USER

 CREATE_USER

 MODIFY_USER

S.No Admin Activity Action Code Enum Provided by

Intellicus

1. Create a user: Admin

can create a user at

intellicus end.

CREATE_USER Enums.ActionCodes.CREATE_

USER

2. Suspend a user:

Admin can suspend an

active user.

SUSPEND_USER Enums.ActionCodes.SUSPEND

_USER

3. Activate a user:

Admin can activate a

suspended user.

ACTIVATE_USER Enums.ActionCodes.ACTIVATE

_USER

4. Delete a user: Admin

can delete an active

or suspended user.

DELETE_USER Enums.ActionCodes.DELETE_

USER

5. Modify a user: Admin

can modify a user.

MODIFY_USER Enums.ActionCodes.MODIFY_

USER

10. Set the user role. User role specifies which type of role admin wants to assign

to newly created user.

11. Call the callIntellicusControllerAPI() method of SingleSignOn class to send the

request to Intellicus for Admin Activity.

Method:

This method calls Intellicus API and passes the user credentials to Intellicus.

public String callIntellicusControllerAPI() throws IOException

Admin Activities Performed through SSO

Intellicus Single Sign-on 66

Returns:

 String: Received Status message from Intellicus

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by

Intellicus

1. 'user suspend' operation

requested by admin is

completed.

USER SUSPEND

SUCCEEDED

Enums.

ResponseMessages.USER_S

USPEND_SUCCEEDED

2. 'user activate' operation

requested by admin is

completed.

USER

ACTIVATION

SUCCEEDED

Enums.ResponseMessages

.USER_ACTIVATION_SUCCE

EDED

3. „user suspend' operation

requested by admin for

an „already suspended‟

user.

USER ALREADY

SUSPENDED

Enums.ResponseMessages

.USER_ALREADY_SUSPENDE

D

4. 'user activate' operation

requested by admin for

an „already active‟ user.

USER ALREADY

ACTIVATED

Enums.ResponseMessages

.USER_ALREADY_ACTIVATE

D

5. 'user delete' operation

requested by admin is

completed.

USER

DELETION

SUCCEEDED

Enums.ResponseMessages

.USER_DELETION_SUCCEED

ED

6. user to be

activated/suspended/dele

ted does not exist at

Intellicus.

USER DOES

NOT EXIST

Enums.ResponseMessages

.USER_DOES_NOT_EXIST

7. Report Server is down. COULD NOT

CONNECT TO

REPORT

SERVER

Enums.ResponseMessages

.COULD_NOT_CONNECT_TO

_REPORT_SERVER

8. User identification failed

at Intellicus end.

AUTHENTICATI

ON FAILED

Enums.ResponseMessages

.AUTHENTICATION_FAILED

9. Intellicus Repository

database is down.

REPOSITORY

DB IS DOWN

Enums.ResponseMessages

.REPOSITORY_DB_IS_DOWN

10. An unknown exception

occurs at Intellicus.

REPORTING

NOT AVAILABLE

Enums.ResponseMessages

.REPORTING_NOT_AVAILAB

LE

Admin Activities Performed through SSO

Intellicus Single Sign-on 67

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by

Intellicus

11. 'user create' operation

requested by admin is

completed.

USER

CREATION

SUCCEEDED

Enums.ResponseMessages

.USER_CREATION_SUCCEED

ED

12. 'user create' operation

requested by admin was

for an „already existing‟

user.

USER ALREADY

EXIST

Enums.ResponseMessages

.USER_ALREADY_EXIST

13. „user modify‟ USER

MODIFICATION

SUCCEEDED

Enums.ResponseMessages.

USER_MODIFICATION_SUCC

EEDED

Note: Please refer IntellicusSSOAdminActivity.java for sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\Java

Sample Code:

try

{

 String actionCode=request.getParameter("ACTION_CODE");

SingleSignOn singleSignOn=new SingleSignOn();

 //Set user credentials for user to be

activated/deleted/suspended by Admin user.

 // OR set the credentials for logged-in user for End -user

requests.

 //user password is not required, if the authentication mode for

organization is "Host Application."

 //These credentials can be fetched from the data structure

maintained for the selected user.

String hostAppUserid="userId";

String hostAppOrgId="orgId";

 UserInfo userInfo=new UserInfo();

 // Set user credentials for admin user.

 // Admin user credentials are required if some request for

admin activity is raised.

 // Admin activities are like User Management, Database

connection creation/modification etc.

 // These can be read from any property file or from

repository/database.

Admin Activities Performed through SSO

Intellicus Single Sign-on 68

String intellicusAdminUserId="Admin"; //This value can be read

from any prperty file or database.

String intellicusAdminOrgId="Intellica";//This value can be read

from any prperty file or database.

String intellicusAdminPassword="Admin"; //This value can be read

from any prperty file or database.

UserInfo adminUserInfo=new UserInfo();

 adminUserInfo.setUserId(intellicusAdminUserId);

 adminUserInfo.setOrgID(intellicusAdminOrgId);

 adminUserInfo.setPassword(intellicusAdminPassword);

 SingleSignOn.setAdminUserInfo(adminUserInfo);

 // Set the path for Intellicus Web application

 // This can be read from any property file or from

repository/database.

 singleSignOn.setIntellicusURL("http://localhost/intellicus");

// This is for admin activities.

// Admin activity here deals with User Management at Intellicus.

if(actionCode!=null && actionCode.equals("ACTIVATE_USER"))

{

 singleSignOn.setActionCode(Enums.ActionCodes.ACTIVATE_USER);

 }

 else if(actionCode!=null && actionCode.equals("DELETE_USER"))

 {

 singleSignOn.setActionCode(Enums.ActionCodes.DELETE_USER);

 }

 else if(actionCode!=null && actionCode.equals("SUSPEND_USER"))

 {

 singleSignOn.setActionCode(Enums.ActionCodes.SUSPEND_USER);

}

else if(actionCode!=null && actionCode.equals("CREATE_USER"))

 {

 singleSignOn.setActionCode(Enums.ActionCodes.CREATE_USER);

}

 //Set the credentials for User to be suspended

Admin Activities Performed through SSO

Intellicus Single Sign-on 69

 userInfo.setUserId(hostAppUserid);

 userInfo.setOrgID(hostAppOrgId);

 singleSignOn.setUserInfo(userInfo);

 String statusMsg=singleSignOn.callIntellicusControllerAPI();

PrintWriter out=response.getWriter();

out.println(statusMsg);

}

catch(SingleSignOnException e)// if connection for the

intellicusURL can not be opened. Reason can be

 //Intellicus url is wrong or Report Server is down.

{

e.printStackTrace();

 PrintWriter out=response.getWriter();

 out.println("Intellicus Web Application Not Available ");

 }

 catch(Exception e)

 {

 PrintWriter out=response.getWriter();

 out.println("Intellicus Web Application Not Available ");

 }

Host Application on .Net Platform

Implementation code can be written inside any aspx of Host application.

1. Host application need to add intellicaSSO.dll in their application.

2. Host application need to import namespace

Intellicus.Integration.SingleSignOn.

using Intellicus.Integration.SingleSignOn;

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

Constructor

public UserInfo()

Constructor

public UserInfo (String userId,String password,String orgId)

Admin Activities Performed through SSO

Intellicus Single Sign-on 70

Parameters:

 userId : User Id of the logged in user

 password: Password of the logged in user.

 orgId : Organization id of the logged in user

Constructor

public UserInfo (String userId,String password,String orgId)

Parameters:

 userId : User Id of the logged in user

 orgId : Organization id of the logged in user

5. Set this userInfo object to UserInfo property of SingleSignOn class.

singleSignOn.UserInfo = userInfo;

6. Make an object of UserInfo class for Admin user info. Set the user credentials

for Admin user in Intellicus in this object.

7. Set the IntellicusUrl.

8. Intellicus url can be read from property file or some database or repository.

9. Set the action code. Action code is required to specify which action admin

user want to perform in Intellicus.

Action code can be:

 ACTIVATE_USER

 DELETE_USER

 SUSPEND_USER

 CREATE_USER

S.No Admin Activity Action Code Enum Provided by

Intellicus

1. Create a user: Admin

can create a user at

intellicus end.

CREATE_USER Enums.ActionCodes.CREATE_

USER

2. Suspend a user:

Admin can suspend an

SUSPEND_USER Enums.ActionCodes.SUSPEND

_USER

Admin Activities Performed through SSO

Intellicus Single Sign-on 71

S.No Admin Activity Action Code Enum Provided by

Intellicus

active user.

3. Activate a user:

Admin can activate a

suspended user.

ACTIVATE_USER Enums.ActionCodes.ACTIVATE

_USER

4. Delete a user: Admin

can delete an active

or suspended user.

DELETE_USER Enums.ActionCodes.DELETE_

USER

10. Set the user role. User role specifies which type of role admin wants to assign

to newly created user.

11. Call the callIntellicusControllerAPI () method of SingleSignOn class to send

the request to Intellicus for Admin Activity.

Method:

This method calls Intellicus API and passes the user credentials to Intellicus. It

throws SingleSignOnException.

public String callIntellicusControllerAPI()

Returns:

 String: Received Status message from Intellicus

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by

Intellicus

1. 'user suspend' operation

requested by admin is

completed.

USER SUSPEND

SUCCEEDED

Enums.

ResponseMessages.USER_S

USPEND_SUCCEEDED

2. 'user activate' operation

requested by admin is

completed.

USER

ACTIVATION

SUCCEEDED

Enums.ResponseMessages

.USER_ACTIVATION_SUCCE

EDED

3. „user suspend' operation

requested by admin for

an „already suspended‟

user.

USER ALREADY

SUSPENDED

Enums.ResponseMessages

.USER_ALREADY_SUSPENDE

D

4. 'user activate' operation

requested by admin for

an „already active‟ user.

USER ALREADY

ACTIVATED

Enums.ResponseMessages

.USER_ALREADY_ACTIVATE

D

Admin Activities Performed through SSO

Intellicus Single Sign-on 72

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by

Intellicus

5. 'user delete' operation

requested by admin is

completed.

USER

DELETION

SUCCEEDED

Enums.ResponseMessages

.USER_DELETION_SUCCEED

ED

6. user to be

activated/suspended/dele

ted does not exist at

Intellicus.

USER DOES

NOT EXIST

Enums.ResponseMessages

.USER_DOES_NOT_EXIST

7. Report Server is down. COULD NOT

CONNECT TO

REPORT

SERVER

Enums.ResponseMessages

.COULD_NOT_CONNECT_TO

_REPORT_SERVER

8. User identification failed

at Intellicus end.

AUTHENTICATI

ON FAILED

Enums.ResponseMessages

.AUTHENTICATION_FAILED

9. Intellicus Repository

database is down.

REPOSITORY

DB IS DOWN

Enums.ResponseMessages

.REPOSITORY_DB_IS_DOWN

10. An unknown exception

occurs at Intellicus.

REPORTING

NOT AVAILABLE

Enums.ResponseMessages

.REPORTING_NOT_AVAILAB

LE

11. 'user create' operation

requested by admin is

completed.

USER

CREATION

SUCCEEDED

Enums.ResponseMessages

.USER_CREATION_SUCCEED

ED

12. 'user create' operation

requested by admin was

for an „already existing‟

user.

USER ALREADY

EXIST

Enums.ResponseMessages

.USER_ALREADY_EXIST

Note: Please refer IntellicusSSOAdminActivity.aspx for sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\DotNet

Sample Code:

try

{

 String actionCode = "SUSPEND_USER";

 SingleSignOn singleSignOn = new SingleSignOn();

#region Creating UserInfo

Admin Activities Performed through SSO

Intellicus Single Sign-on 73

//Set user credentials for user to be

//activated/deleted/suspended by Admin user.

//user password is not required, if the authentication mode

//for organization is "Host Application."

//These credentials can be fetched from the data structure

//maintained for the selected user.

 String hostAppUserid = "a";

 String hostAppOrgId = "k31";

//set the credentials for the user to be

//activated/deleted/suspended

 UserInfo userInfo =new UserInfo();

 userInfo.UserId = hostAppUserid;

 userInfo.OrgID = hostAppOrgId;

 singleSignOn.UserInfo = userInfo;

#endregion

#region Create AdminInfo

 // Set user credentials for admin user.

// Admin user credentials are required if some request for

//admin activity is raised.

// this admin user should be present at Intellicus with

//Superadmin system privileges.

// Admin activities are like User Management, Database

//connection creation/modification etc.

// These can be read from any property file or from

//repository/database.

//This value can be read from any prperty file or database.

String intellicusAdminUserId = "Admin";

 //This value can be read from any prperty file or database.

String intellicusAdminOrgId = "Intellica”;

//This value can be read from any prperty file or database.

 String intellicusAdminPassword = "Admin";

 UserInfo adminUserInfo =new UserInfo();

 adminUserInfo.UserId = intellicusAdminUserId;

 adminUserInfo.OrgID = intellicusAdminOrgId;

 adminUserInfo.Password = intellicusAdminPassword;

 SingleSignOn.AdminUserInfo = adminUserInfo;

#endregion

#region Set Intellicus Path and ActionCode

Admin Activities Performed through SSO

Intellicus Single Sign-on 74

 // Set the path for Intellicus Web application

// This can be read from any property file or from

//repository/database.

singleSignOn.IntellicusURL="http://192.168.33.165/intellicusvss";

 if (actionCode != null)

 {

 if (actionCode.Equals("ACTIVATE_USER"))

 singleSignOn.ActionCode = Enums.ActionCodes.ACTIVATE_USER;

 if (actionCode.Equals("DELETE_USER"))

 singleSignOn.ActionCode = Enums.ActionCodes.DELETE_USER;

 if (actionCode.Equals("SUSPEND_USER"))

 singleSignOn.ActionCode = Enums.ActionCodes.SUSPEND_USER;

 }

#endregion

#region Get Status Message

 //call the Intellicus controller API to activate/delet/suspend

 //a user at Intellicus end.

 // It will return a status message both in case of operation

 //success or failure.

 String statusMsg = singleSignOn.callIntellicusControllerAPI();

 Response.Write(statusMsg);

 Response.Write("
");

 Response.Write(userInfo.Locale);

 Response.Write("
");

 Response.Write(adminUserInfo.Locale);

#endregion

}

catch (SingleSignOnException ex)

{

 Response.Write(ex.Message);

}

catch (Exception exc)

{

 Response.Write(exc.Message);;

}

Admin Activities Performed through SSO

Intellicus Single Sign-on 75

Host Application on PHP Platform

Implementation code can be written inside any php or html files of Host

application.

1. Host application need to add intellicaSSO.php in their application.

2. Host application file needs to include file intellicaSSO.php.

include_once("intellicaSSO.php");

3. Make an object of SingleSignOn class for invoking the methods of this class.

4. Make an object of UserInfo class and set the user credentials using the setter

methods provided by UserInfo class.

5. Pass this userInfo object to SingleSignOn class using the setUserInfo

(userInfo) method.

public function setUserInfo($userInfo)

Parameters:

 UserInfo : Object reference of UserInfo class.

6. Make an object of UserInfo class for Admin user info. Set the user credentials

for Admin user in Intellicus in this object.

7. Set the IntellicusUrl.

8. Intellicus url can be read from property file or some database or repository.

9. Set the action code. Action code is required to specify which action admin

user want to perform in Intellicus.

Action code can be:

 ACTIVATE_USER

 DELETE_USER

 SUSPEND_USER

 CREATE_USER

 MODIFY_USER

S.No Admin Activity Action Code Enum Provided by

EnumsActionCodes class in

intellicaSSO.php

1. Create a user: Admin

can create a user at

intellicus end.

CREATE_USER CREATE_USER

Admin Activities Performed through SSO

Intellicus Single Sign-on 76

S.No Admin Activity Action Code Enum Provided by

EnumsActionCodes class in

intellicaSSO.php

2. Suspend a user:

Admin can suspend an

active user.

SUSPEND_USER SUSPEND_USER

3. Activate a user:

Admin can activate a

suspended user.

ACTIVATE_USER ACTIVATE_USER

4. Delete a user: Admin

can delete an active

or suspended user.

DELETE_USER DELETE_USER

5. Modify a user: Admin

can modify the

attributes of any user.

MODIFY_USER MODIFY_USER

10. Set the user role. User role specifies which type of role admin wants to assign

to newly created user.

11. Call the callIntellicusControllerAPI () method of SingleSignOn class to send

the request to Intellicus for Admin Activity.

Method:

This method calls Intellicus API and passes the user credentials to Intellicus.

public function callIntellicusControllerAPI()

Returns:

 String: Received Status message from Intellicus

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by Enums

ResponseMessages class

of intellicaSSO.php

1. 'user suspend' operation

requested by admin is

completed.

USER SUSPEND

SUCCEEDED

USER_SUSPEND_SUCCEEDE

D

2. 'user activate' operation

requested by admin is

completed.

USER

ACTIVATION

SUCCEEDED

USER_ACTIVATION_SUCCEE

DED

3. „user suspend' operation

requested by admin for

an „already suspended‟

user.

USER ALREADY

SUSPENDED

USER_ALREADY_SUSPENDE

D

Admin Activities Performed through SSO

Intellicus Single Sign-on 77

S.No Activity Status at

Intellicus

Status

Message

Enum Provided by Enums

ResponseMessages class

of intellicaSSO.php

4. 'user activate' operation

requested by admin for

an „already active‟ user.

USER ALREADY

ACTIVATED

USER_ALREADY_ACTIVATED

5. 'user delete' operation

requested by admin is

completed.

USER

DELETION

SUCCEEDED

USER_DELETION_SUCCEEDE

D

6. User to be activated /

suspended / deleted does

not exist at Intellicus.

USER DOES

NOT EXIST

USER_DOES_NOT_EXIST

7. Report Server is down. COULD NOT

CONNECT TO

REPORT

SERVER

COULD_NOT_CONNECT_TO_

REPORT_SERVER

8. User identification failed

at Intellicus end.

AUTHENTICATI

ON FAILED

AUTHENTICATION_FAILED

9. Intellicus Repository

database is down.

REPOSITORY

DB IS DOWN

REPOSITORY_DB_IS_DOWN

10. An unknown exception

occurs at Intellicus.

REPORTING

NOT AVAILABLE

REPORTING_NOT_AVAILABL

E

11. 'user create' operation

requested by admin is

completed.

USER

CREATION

SUCCEEDED

USER_CREATION_SUCCEED

ED

12. 'user create' operation

requested by admin was

for an „already existing‟

user.

USER ALREADY

EXIST

USER_ALREADY_EXIST

13. „user modify‟ USER

MODIFICATION

SUCCEEDED

USER_MODIFICATION_SUCC

EEDED

Note: Please refer IntellicusSSOAdminActivity.php for sample code.

Path: <Install_Path>\SampleCodes\SingleSignOn\PHP

Sample Code:

include_once("intellicaSSO.php");

try

{

 $sso=new SingleSignOn();

Admin Activities Performed through SSO

Intellicus Single Sign-on 78

 // Set the path for Intellicus Web application

 // This can be read from any property file or from

repository/database.

 // In lbMode, give the URL for LB application,

 // else give the URL for Intellicus Web application.

 $sso->setIntellicusURL("http://192.168.33.165/intellicus");

 //Set user credentials for user to be

activated/deleted/suspended by Admin user.

 //user password is not required, if the authentication mode for

organization is "Host Application."

 //These credentials can be fetched from the data structure

maintained for the selected user.

 $userinfo=new UserInfo;

 $userinfo->setUserId("k1");

 $userinfo->setOrgID("ab");

 $sso->setUserInfo($userinfo);

 // Set user credentials for admin user.

 // Admin user credentials are required if some request for

admin activity is raised.

 // this admin user should be present at Intellicus with

Superadmin system privileges.

 // Admin activities are like User Management, Database

connection creation/modification etc.

 // These can be read from any property file or from

repository/database.

 $adminUserinfo=new UserInfo;

 $adminUserinfo->setUserId("Admin");

 $adminUserinfo->setPassword("Admin");

 $adminUserinfo->setOrgID("Intellica");

 $sso->setAdminUserInfo($adminUserinfo);

 // This is for admin activities.

 // Admin activity here deals with User Management at

Intellicus.

 $actionCode=$_REQUEST["ACTION_CODE"];

 if($actionCode=="ACTIVATE_USER")

 {

 $sso->setActionCode(EnumsActionCodes::$ACTIVATE_USER);

 }

 elseif($actionCode=="DELETE_USER")

 {

 $sso->setActionCode(EnumsActionCodes::$DELETE_USER);

Admin Activities Performed through SSO

Intellicus Single Sign-on 79

 }

 elseif($actionCode=="SUSPEND_USER")

 {

 $sso->setActionCode(EnumsActionCodes::$SUSPEND_USER);

 }

 elseif($actionCode=="CREATE_USER")

 {

 $sso->setActionCode(EnumsActionCodes::$CREATE_USER);

 }

 echo $sso->callIntellicusControllerAPI();

}

catch(SingleSignOnException $e)

{

 print_r("Intellicus Web Application Not Available");

}

catch(Exception $e)

{ print_r("Intellicus Web Application Not Available");

}

